• 제목/요약/키워드: Chat GPT

검색결과 250건 처리시간 0.024초

AI 기반 이미지 생성 기술의 농업 적용 가능성 (Agricultural Applicability of AI based Image Generation)

  • 윤승리;이예영;정은규;안태인
    • 생물환경조절학회지
    • /
    • 제33권2호
    • /
    • pp.120-128
    • /
    • 2024
  • 2022년 ChatGPT 출시 이후, 생성형 AI 산업은 엄청난 규모로 성장하였으며, 인지 작업에 혁신을 가져올 것으로 기대되고 있다. 특히 AI 기반 이미지 생성 기술은 현재 디지털 세계의 핵심적인 변화를 주도하고 있다. 본 연구는 대표적인 AI 이미지 생성 도구인 미드저니, 스테이블 디퓨전, 그리고 파이어플라이의 기술적 원리를 분석하고, 이미지 생성 결과를 비교함으로써 그 유용성을 평가하였다. 실험 결과, 이 AI 도구들은 대표 시설원예 작물인 토마토, 딸기, 파프리카, 오이의 과실 이미지를 실제와 유사하게 재현하였다. 특히 파이어플라이는 실제 온실 재배 작물 이미지를 매우 사실적으로 묘사하는 능력을 보여주었다. 그러나 모든 도구들은 작물이 자라는 온실의 환경적 맥락을 완전히 반영하는 데에 있어서 다소 한계를 보였다. 프롬프트 개선 및 레퍼런스 이미지를 활용하여 딸기과실 이미지와 시설 딸기재배 시스템을 보다 정교하게 생성하는 과정도 포함되었으며, 이러한 접근은 AI 이미지 생성 기술의 세밀한 조정이 가능함을 보여준다. 오이 과실 이미지 생성능력을 비교한 결과, AI 생성 도구들은 실제 이미지와 매우 유사한 이미지를 생성해 냄으로써 이미지 생성 점수(CLIP score)에 있어서 통계적 차이를 보이지 않았다. 본 연구는 AI 기반 이미지 생성 이미지 기술이 농업 분야에 활용될 수 있는 방안을 모색하며, 생성형 AI의 농업에 대한 적용을 긍정적으로 전망한다.

Updated Primer on Generative Artificial Intelligence and Large Language Models in Medical Imaging for Medical Professionals

  • Kiduk Kim;Kyungjin Cho;Ryoungwoo Jang;Sunggu Kyung;Soyoung Lee;Sungwon Ham;Edward Choi;Gil-Sun Hong;Namkug Kim
    • Korean Journal of Radiology
    • /
    • 제25권3호
    • /
    • pp.224-242
    • /
    • 2024
  • The emergence of Chat Generative Pre-trained Transformer (ChatGPT), a chatbot developed by OpenAI, has garnered interest in the application of generative artificial intelligence (AI) models in the medical field. This review summarizes different generative AI models and their potential applications in the field of medicine and explores the evolving landscape of Generative Adversarial Networks and diffusion models since the introduction of generative AI models. These models have made valuable contributions to the field of radiology. Furthermore, this review also explores the significance of synthetic data in addressing privacy concerns and augmenting data diversity and quality within the medical domain, in addition to emphasizing the role of inversion in the investigation of generative models and outlining an approach to replicate this process. We provide an overview of Large Language Models, such as GPTs and bidirectional encoder representations (BERTs), that focus on prominent representatives and discuss recent initiatives involving language-vision models in radiology, including innovative large language and vision assistant for biomedicine (LLaVa-Med), to illustrate their practical application. This comprehensive review offers insights into the wide-ranging applications of generative AI models in clinical research and emphasizes their transformative potential.

인공지능을 활용한 통합방위체계의 효율성 분석 (Efficiency Analysis of Integrated Defense System Using Artificial Intelligence)

  • 유병덕;신진
    • 융합보안논문지
    • /
    • 제23권1호
    • /
    • pp.147-159
    • /
    • 2023
  • 최근 챗 GPT 인공지능(AI)은 전 세계 모든 정부 및 기업, 군 분야까지 초미의 관심사이다. 기존의 읽고 쓰는 AI시대에서 말과 글과 그림을 만들어 내는 생성형 AI로 인간과의 소통까지도 가능한 시대에 진입했다. 최근 우리나라 국가 위기시 발령하는 국가기관의 현행 법·령의 복잡성과 전·평시 법률적용 시기의 모호성으로 인해 상황조치의 골든타임을 놓치는 경우가 많았다. 이러한 이유들로 대형 참사 및 북한과의 군사적 충돌 때마다 제대로 된 대응을 하지 못했다. 따라서 본 연구의 목적은 이러한 상황을 극복하기 위한 제언으로 국가 위기시 컨트럴타워 역할을 수행 할 수 있는 "국가위기 관리 기본모법" 과 이를 활용하는 "인공지능 관련법" 개정과 현재 인공지능 기술을 민·관·군·경과 상호 연동하는 "인공지능 거버넌스 활성화 방안" 및 전국 지자체 통합방위 종합상황실내 "MIDS 인공지능반"을 신설하여 인공지능을 활용한 미래의 통합방위체계 발전방안을 제시하였다.

언어 모델 기반 페르소나 대화 모델 (Personalized Chit-chat Based on Language Models)

  • 장윤나;오동석;임정우;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.491-494
    • /
    • 2020
  • 최근 언어 모델(Language model)의 기술이 발전함에 따라, 자연어처리 분야의 많은 연구들이 좋은 성능을 내고 있다. 정해진 주제 없이 인간과 잡담을 나눌 수 있는 오픈 도메인 대화 시스템(Open-domain dialogue system) 분야에서 역시 이전보다 더 자연스러운 발화를 생성할 수 있게 되었다. 언어 모델의 발전은 응답 선택(Response selection) 분야에서도 모델이 맥락에 알맞은 답변을 선택하도록 하는 데 기여를 했다. 하지만, 대화 모델이 답변을 생성할 때 일관성 없는 답변을 만들거나, 구체적이지 않고 일반적인 답변만을 하는 문제가 대두되었다. 이를 해결하기 위하여 화자의 개인화된 정보에 기반한 대화인 페르소나(Persona) 대화 데이터 및 태스크가 연구되고 있다. 페르소나 대화 태스크에서는 화자마다 주어진 페르소나가 있고, 대화를 할 때 주어진 페르소나와 일관성이 있는 답변을 선택하거나 생성해야 한다. 이에 우리는 대용량의 코퍼스(Corpus)에 사전 학습(Pre-trained) 된 언어 모델을 활용하여 더 적절한 답변을 선택하는 페르소나 대화 시스템에 대하여 논의한다. 언어 모델 중 자기 회귀(Auto-regressive) 방식으로 모델링을 하는 GPT-2, DialoGPT와 오토인코더(Auto-encoder)를 이용한 BERT, 두 모델이 결합되어 있는 구조인 BART가 실험에 활용되었다. 이와 같이 본 논문에서는 여러 종류의 언어 모델을 페르소나 대화 태스크에 대해 비교 실험을 진행했고, 그 결과 Hits@1 점수에서 BERT가 가장 우수한 성능을 보이는 것을 확인할 수 있었다.

  • PDF

긍정적 감정 유발을 위한 AI챗봇기반 일기 작성 시스템 (AI Chatbot-Based Daily Journaling System for Eliciting Positive Emotions)

  • 김준현;문미경
    • 한국전자통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.105-112
    • /
    • 2024
  • 현대 사회에서 감정 표현과 자기 성찰은 스트레스 관리와 정신 건강에 긍정적인 영향을 미치는 핵심 요소로 간주하며, 이에 따라 일기 작성의 중요성이 대두되고 있다. 그러나 기존의 일기 작성 방식은 시간과 공간적 제약으로 인해 많은 사람이 이를 피하거나 어렵게 느끼고 있다. 최근 챗봇 및 감정 분석 기술의 급격한 발전은 이러한 문제를 해결하기 위한 중요한 수단으로 주목받고 있다. 본 논문에서는 GPT-3 모델과 감정 분석 기술을 결합한 인공지능 챗봇을 소개하며, 이를 활용하여 사용자의 채팅 데이터를 기반으로 자동으로 일기를 작성하는 시스템을 개발하는 과정을 기술한다. 본 시스템을 통해 사용자들은 더 편리하고 효율적인 방식으로 일기를 작성할 수 있으며, 자신의 감정을 보다 깊이 이해하고 긍정적인 감정을 촉진하는 데 기여할 것으로 기대한다.

트랜스포머 알고리즘의 멀티 헤드 어텐션과 피드포워드 네트워크에서 활용 가능한 효율적인 행렬 곱셈기 (An Efficient Matrix Multiplier Available in Multi-Head Attention and Feed-Forward Network of Transformer Algorithms)

  • 장석우;김동순
    • 전기전자학회논문지
    • /
    • 제28권1호
    • /
    • pp.53-64
    • /
    • 2024
  • 자연어 처리 모델이 발전함에 따라 챗 GPT와 같은 대화형 언어 생성 AI 모델이 널리 사용되고 있다. 따라서 자연어 처리 최신 모델의 기반이 되는 트랜스포머 알고리즘을 하드웨어로 구현하여 연산 속도와 전력 소비량을 개선하는 것은 중요하다고 할 수 있다. 특히, 행렬 곱셈을 통해 문장에서 서로 다른 단어 간의 관계를 분석하는 멀티 헤드 어텐션과 피드 포워드 네트워크는 트랜스포머에서 연산량이 가장 큰 핵심적인 알고리즘이다. 본 논문에서는 기존의 시스톨릭 어레이를 변형하여 행렬 곱 연산 속도를 개선하고, 입력 단어 개수 변동에 따라 지연시간도 변동되는 유동적인 구조를 제안한다. 또한, 트랜스포머 알고리즘의 정확도를 유지하는 형태로 양자화를 하여 메모리 효율성과 연산 속도를 높였다. 본 논문은 평가를 위해 멀티헤드어텐션과 피드포워드 네트워크에서 소요되는 클럭사이클을 검증하고 다른 곱셈기와 성능을 비교하였다.

한국어 언어모델의 속성 및 정량적 편향 분석: 영어 언어모델과의 비교 및 개선 제안 (Properties and Quantitative Analysis of Bias in Korean Language Models: A Comparison with English Language Models and Improvement Suggestions)

  • 김재민;채동규
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.558-562
    • /
    • 2023
  • 최근 ChatGPT의 등장으로 텍스트 생성 모델에 대한 관심이 높아지면서, 텍스트 생성 태스크의 성능평가를 위한 지표에 대한 연구가 활발히 이뤄지고 있다. 전통적인 단어 빈도수 기반의 성능 지표는 의미적인 유사도를 고려하지 못하기 때문에, 사전학습 언어모델을 활용한 지표인 BERTScore를 주로 활용해왔다. 하지만 이러한 방법은 사전학습 언어모델이 학습한 데이터에 존재하는 편향으로 인해 공정성에 대한 문제가 우려된다. 이에 따라 한국어 사전학습 언어모델의 편향에 대한 분석 연구가 필요한데, 기존의 한국어 사전학습 언어모델의 편향 분석 연구들은 사회에서 생성되는 다양한 속성 별 편향을 고려하지 못했다는 한계가 있다. 또한 서로 다른 언어를 기반으로 하는 사전학습 언어모델들의 속성 별 편향을 비교 분석하는 연구 또한 미비하였다. 이에 따라 본 논문에서는 한국어 사전학습 언어모델의 속성 별 편향을 비교 분석하며, 영어 사전학습 언어모델이 갖고 있는 속성 별 편향과 비교 분석하였고, 비교 가능한 데이터셋을 구축하였다. 더불어 한국어 사전학습 언어모델의 종류 및 크기 별 편향 분석을 통해 적합한 모델을 선택할 수 있도록 가이드를 제시한다.

  • PDF

인공지능으로 작성된 논문의 처리 방안 (How to Review a Paper Written by Artificial Intelligence)

  • 신동우;문성훈
    • Journal of Digestive Cancer Research
    • /
    • 제12권1호
    • /
    • pp.38-43
    • /
    • 2024
  • Artificial Intelligence (AI) is the intelligence of machines or software, in contrast to human intelligence. Generative AI technologies, such as ChatGPT, have emerged as valuable research tools that facilitate brainstorming ideas for research, analyzing data, and writing papers. However, their application has raised concerns regarding authorship, copyright, and ethical considerations. Many organizations of medical journal editors, including the International Committee of Medical Journal Editors and the World Association of Medical Editors, do not recognize AI technology as an author. Instead, they recommend that researchers explicitly acknowledge the use of AI tools in their research methods or acknowledgments. Similarly, international journals do not recognize AI tools as authors and insist that human authors should be accountable for the research findings. Therefore, when integrating AI-generated content into papers, it should be disclosed under the responsibility of human authors, and the details of the AI tools employed should be specified to ensure transparency and reliability.

Hand Tracking과 대화형 AI를 활용한 VR 실감형 수어 교육 콘텐츠 개발 연구 (Research on Development of VR Realistic Sign Language Education Content Using Hand Tracking and Conversational AI)

  • 천재성;문일영
    • 한국항행학회논문지
    • /
    • 제28권3호
    • /
    • pp.369-374
    • /
    • 2024
  • 본 연구는 청각장애인과 비장애인 모두를 위한 수어 교육의 접근성과 효율성을 개선하는 것을 목적으로 한다. 이를 위해 Hand Tracking 기술과 대화형 AI를 통합한 VR 실감형 수어 교육 콘텐츠를 개발하였다. 사용자는 이 콘텐츠를 통해 실시간으로 수어를 학습하며, 가상 환경에서의 직접적인 의사소통을 경험할 수 있다. 연구 결과, 이러한 통합 접근 방식이 수어 학습에 있어 몰입감을 크게 향상시키며, 학습자에게 더 깊은 이해를 제공함으로써 수어 학습의 장벽을 낮추는 데 기여한다는 것을 확인하였다. 이는 수어 교육의 새로운 패러다임을 제시하며, 기술이 교육의 접근성과 효과를 어떻게 변화시킬 수 있는지를 보여준다.

자연어 요구사항으로부터 UML 시퀀스 모델을 경유한 3D 객체 추출 메커니즘 (3D Object Extraction Mechanism via UML Sequence Models from Natural Language Requirements)

  • 김현태;김장환;김영철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.490-493
    • /
    • 2024
  • 현재 다양한 분야에서 AI 가 사용되고 있다. 최근에는 소프트웨어공학 관점에서 요구 사항 분석에 Chat GPT 와 같은 LLM 모델을 적용하고 있다. 하지만 1) 대부분의 생성형 AI 는 불투명한 공정을 통해 3D 이미지가 생성하고, 3D 이미지를 생성할 때마다 다른 이미지를 생성한다. 이에 따라 동일한 인물이나 사물을 사용하고 싶은 사용자들은 동일한 객체가 들어간 그림을 일관성 있게 생성할 수 없다. 2) 또한 LLM 과 이미지 생성 AI 와의 결합이 시도 되고 있지만 문장 의미 분석 성능이 부족하다. 이를 해결하기 위해, 자연어 요구사항을 언어학적 기법을 통해 분석하고, 분석 결과를 기반으로 UML 시퀀스 다이어그램 및 3D 객체 생성 메커니즘을 제안한다. 즉 언어학적 분석 기법을 통해, 요구사항의 정확한 의미와 속성을 추출한다. 그런 다음 추출된 정보를 시퀀스 다이어그램과 매핑하여 3D 객체 이미지를 생성한다. 제안하는 방법을 통해 3D 객체 생성의 소프트웨어 개발 공정 사용으로 생산성을 높여 시간과 비용을 단축할 수 있을 것으로 기대한다.