• Title/Summary/Keyword: Chassis dynamometer system

Search Result 54, Processing Time 0.023 seconds

Experimental Investigation of Creep Groan Noise (크립 그론 소음 특성에 대한 실험적 연구)

  • Kang, Kyung Min;Jeon, Hyun Cheol;Kang, Yeon June;Cho, Min Hyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.5
    • /
    • pp.673-678
    • /
    • 2013
  • Creep groan noise occurs at low frequencies immediately after releasing brake pressure or when a car stops. This noise can be used to predict problems in not only the brake system but also the vehicle system. Because of its complexity, it is difficult to determine its characteristics. Therefore, most improvements are conducted by changing the brake pad, and it still remains difficult to conduct a test using a vehicle. In this study, the characteristics of creep groan noise and the effects from a vehicle system are investigated by using vehicles and an NVH chassis-dynamometer through various tests. A new evaluation method for creep groan noise by using a vehicle is proposed, and the possibility of reduction schemes from the viewpoint of the vehicle system is confirmed from the results mentioned above.

Speed-Based Emission Factor regarding Vehicle Specific Power and Acceleration during On-road Driving (도로 주행 중의 비출력 및 가속도 조건을 반영한 차속별 배출계수 연구)

  • Lee, Tae-Woo;Keel, Ji-Hoon;Park, Jun-Hong;Park, Yong-Hee;Hong, Ji-Hyung;Lee, Dae-Yup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.73-81
    • /
    • 2011
  • The performance of emission factor has been validated by comparison with on-road test data. Emission factor, which is a function of vehicle speed, has been acquired based on chassis dynamometer test with NIER driving pattern. Portable Emission Measurement System, PEMS has measured on-road emission. Test vehicle was operated on defined test routes under different driving conditions, and made ten trips along its route. Emission factors properly simulate on-road test result, although there is some drawback to consider variety of driving condition on real world. Vehicle specific power and acceleration have been used to explain the distributed on-road result within same vehicle speed range. The trend in carbon dioxide and nitrogen oxide emission with respect to specific power and acceleration is clear. It has been found that specific power is a good explanatory variable for microscopic analysis for modal test result. Acceleration is good for microscopic as well as macroscopic analysis.

Analysis of fuel economy characteristics depending on the fuel quality and calculation method changed (연료품질 및 연비계산 방법 변화에 따른 연비특성 분석)

  • Lee, Min-Ho;Lim, Wan-Gyu;Lim, Jae-Hyuk;Kim, Ki-Ho
    • Journal of Power System Engineering
    • /
    • v.20 no.4
    • /
    • pp.52-62
    • /
    • 2016
  • Nowadays, emissions of a vehicle are been getting by testing on a chassis dynamometer and a test modes. Also, fuel efficiency is calculated by carbon-balance method that is applying the emissions(CO, THC and $CO_2$) to the fuel calculation formular. In Korea, before 2014, the formular did not include the fuel factors (density, net heat value and carbon weight fraction), but the constants were based on the fuel properties of 2000s. So, this formular did not consider a characteristic of test fuel property that was changed when progressing fuel efficiency test. The characteristics of test fuel property which was distributed in domestic have a difference of quality depending on production regions and oil-refining facilities. Because the fuel properties are variable value during refineries, crude oils and blending contents of a bio-fuel, vehicle fuel is changed for each test. Therefore, the fuel qualities need to apply for a fuel economy test. In this paper, changing patterns of a fuel properties were reviewed during history of fuel standards. Also, the appropriateness of the methods was discussed by calculating and comparing fuel economies with the fuel factors and the constants.

NOx Emission Characteristics of Diesel Passenger Cars Met Euro 6a and 6b Regulations on Off-cycles (Off-cycle에서 Euro 6a 및 6b 규제 만족 디젤 자동차의 NOx 배출 특성)

  • Kim, Sung-Woo;Lim, Jae-Hyuk;Kim, Ki-Ho
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.68-78
    • /
    • 2017
  • Major countries have tighten their NOx regulation of diesel passenger cars. In the case of the EU, the regulation has been toughen up to 6.25 times since 2000. Despite the regulation the NOx concentration of the ambient has not been reduced proportionally. Futhermore, some manufacturers were disclosed using a defeat device for meeting the regulation illegally. As these issues, to reduce NOx emission practically, Korea and the EU introduced the real-world driving emission(RDE) regulation and the test method that will be applied after 2017. Also, the US has used the test equipment(PEMS) to detect a defeat device. In this paper, for the regulation to make a soft landing in Korea, 4 diesel passenger cars which met Euro 6a~6b regulation and were equipped with LNT/SCR were tested at a chassis dynamometer with environmental chamber applying the off-cycles(FTP, US06, SC03, HWFET and CADC) and several ambient condition(-7 and $14^{\circ}C$) as well as certification mode(NEDC, WLTC@ $23^{\circ}C$). The result of the test showed that the ambient temp. and the engine load as a test mode impacted the NOx emission of the cars while the vehicles with SCR emitted NOx lower than with LNT. Additionally, to propose an effective RDE test method, the above result was compared with the results of the other papers which tested RDE using the same cars.

On-Road Testing and Calculation of Emission Factor and Fuel Economy (도로상의 배출가스 측정에 의한 배출계수 및 연료소비효율 산출 연구)

  • Lee, Tae-Woo;Lee, Beom-Ho;Cho, Seung-Hwan;Park, Jun-Hong;Eom, Myoung-Do;Kim, Jong-Choon;Lee, Dae-Yup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.90-101
    • /
    • 2009
  • An objective of this study is to suggest a procedure to evaluate vehicle emissions regardless of the driving pattern. Field experiments using portable emission measurement system were conducted under the real world driving cycle. Standardized average for NOx, $CO_2$ emission and fuel consumption rates were calculated while the vehicle specific power distribution within each vehicle speed bin was taken into consideration. Composite emission factor and fuel economy, which were obtained based on the standardized average results and traffic statistics, showed good similarity to those acquired through the conventional chassis dynamometer tests qualitatively as well as quantitatively. Considering that a conventional method obviously has a limitation to reflect various characteristics of the real world, the new approach suggested in this study can be used as an alternative procedure to collect more specific data to establish the mobile emission factors.

Characteristics of N2O Emission Factor and Measurements from Gasoline-Powered Passenger Vehicles (국내휘발유 승용차량으로부터의 N2O배출인자 특성연구)

  • Kim, Deug-Soo;Ryu, Jeong-Ho;Yoo, Young-Sook;Jung, Sung-Woon;Kim, Dae-Wook
    • Journal of Environmental Science International
    • /
    • v.16 no.2
    • /
    • pp.179-185
    • /
    • 2007
  • Nitrous oxide ($N_2O$) is an important trace gas in the atmosphere not only because of its large global warming potential (GWP) but also because of the role in the ozone depletion in the stratosphere. It has been known that soil is the largest natural source of $N_2O$ in global emission. However, anthropogenic sources contributing from industrial section is likely to increase with rising the energy consumption, and transportation as well. In this study, a total of 32 gasoline-powered passenger vehicles (ranging from small to large engine's displacement and also ranging from aged catalyst to new catalyst) were tested on the chassis dynamometer system in order to elucidate the characteristics of $N_2O$ emission from automobiles under different driving modes. Ten different driving modes developed by NIER were adapted for the test. The results show that the $N_2O$ emission decreases logarithmically with increase of vehicle speed over the all test vehicles ($N_2O$) emission = -0.062 Ln (vehicle speed) + $0.289,\;r^2=0.97$). It revealed that the larger engine's displacement, the more $N_2O$ emission were recorded. The correlation between $N_2O$ emission and catalyst aging was examined. It found that the vehicles with aged catalyst (odometer record more than 8,0000km) emit more $N_2O$ than those with new catalyst. Average $N_2O$ emission was $0.086{\pm}0.095\;N_2O-g/km$ (number of samples=210) for the all test vehicles over the test driving modes.

Study of Fuel Consumption Characteristics and Regenerative Braking Recovery Rate in a TMED Type Parallel Hybrid Electric Vehicle (TMED방식 병렬형 하이브리드 차량의 회생제동 회수율 및 연비 특성 연구)

  • Chung, Jin Ho;Kim, Jin Su;Kim, Ju Whan;Lee, Jin Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.8
    • /
    • pp.485-494
    • /
    • 2016
  • In this work, we conducted a study of fuel consumption characteristics and regenerative braking recovery rate by conducting an experiment using a TMED type parallel hybrid electric vehicle. As regenerative braking technology is considered essential to improve the energy efficiency of the hybrid vehicle, it is necessary to conduct research on the regenerative braking system. Therefore, the electrical characteristics, current balance, and fuel consumption were investigated using an EC type chassis dynamometer with experimental conditions as per IM240 mode. From the results, it was observed that when the initial SOC condition was lower, the engine operating time of the hybrid vehicle increased, and the energy efficiency decreased. While operating in the driving mode characteristics condition and the driving characteristics condition, the difference in the average fuel consumption was not significant. However, after completion of the experiment, there was a difference in the engine operation.

Experimental Evaluation of Direct Measurement for Excitation Forces Acting on the Hard-points of Suspension System to Predict Road-noise Performance (로드노이즈 성능 예측을 위한 현가장치 하드포인트의 가진력 직접 측정법에 대한 실험적 평가)

  • Kang, Yeon June;Kim, Heesoo;Song, David P.;Ih, Kang-Duck;Kim, HyoungGun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.3
    • /
    • pp.184-190
    • /
    • 2015
  • NVH engineering has become a hot issue due to radical technology changes and development in automotive industry since customers' expectations and needs for their vehicle is taken to a higher level. However, the source identification and quantification of the road noise within a vehicle is still not at the level where it needs to be to meet their expectations due to its' complex transfer path and difficulties in path optimization. The primary focus of this research is on direct force obtaining method at suspension hard points using suspension test rig. Directly obtained forces at suspension to body mounting points are critical and crucial for determining the effects of design changes of the suspension has on road noise performance. Direct force obtaining method has its limitation in sensor installation within an actual vehicle therefore, many has been indirectly calculating forces using full matrix inversion method or dynamic stiffness method. In this study, to circumvent this limitation, a suspension rig is used. Then, the suspension rig is verified through a comparative analysis of its dynamic behavior between the actual vehicle by cleat test on chassis dynamometer.

Evaluations for Representativeness of Light-Duty Diesel Vehicles' Fuel-based Emission Factors on Vehicle Operating Conditions (연료 소비량에 기반한 소형 경유차 대기오염물질 배출계수의 운전조건별 대표성 평가)

  • Lee, Taewoo;Kwon, Sangil;Son, Jihwan;Kim, Jiyoung;Jeon, Sangzin;Kim, Jeongsoo;Choi, Kwangho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.6
    • /
    • pp.745-756
    • /
    • 2013
  • The purpose of this study is to evaluate representativeness of fuel-based emission factors. Twelve light-duty diesel vehicles which meet Euro-3 to 5 legislative emission limits were selected for emission tests. Second-by-second modal emission rates of vehicles were measured on a standard laboratory chassis dynamometer system. An off-cycle driving cycle was developed as a representative Korean real-world on-road driving cycle. Fuel-based emission factors were developed for short trip segments that involved in the selected driving cycle. Each segment was defined to have unit travel distance, which is 1 km, and characterized by its average speed and Relative Positive Acceleration (RPA). Fuel-based $NO_x$ emission factors demonstrate relatively good representativeness in terms of vehicle operation conditions. $NO_x$ emission factors are estimated to be within ${\pm}20%$ of area-wide emission factor under more than 40% of total driving situations. This result implies that the fuel-based $NO_x$ emission factor could be practically implemented into the on-road emission management strategies, such as a remote sensing device (RSD). High emitting vehicles as well as high emitting operating conditions heavily affect on the mean values and distributions of CO and THC emission factors. Few high emitting conditions are pulling up the mean value and biasing the distributions, which weaken representativeness of fuel-based CO and THC emission factors.

Characteristics of Air Pollutants Emission from Medium-duty Trucks Equipped EGR and SCR in Korea (국내 EGR과 SCR 장착 중형트럭 대기오염물질 배출 특성)

  • Son, Jihwan;Kim, Jounghwa;Jung, Sungwoon;Yoo, Heungmin;Hong, Heekyung;Mun, Sunhee;Choi, Kwangho;Lee, Jongtae;Kim, Jeongsoo
    • Journal of ILASS-Korea
    • /
    • v.21 no.3
    • /
    • pp.130-136
    • /
    • 2016
  • NOx and PM are important air pollutants as vehicle management policy aspect. Medium-duty truck is the main source of the pollutants although the vehicle market share is only 3.5%. National emission portion of NOx and PM form the mobile sourece are 14% and 16% respectively. In this study it was investigated that characteristics of air pollutants emission on medium duty truck equipped with EGR and SCR system. Vehicle's test reflected driving cycle on the chassis dynamometer, and applied test cycle was WHVC(World Harmonized Vehicle Cycle) mode. The test cycle include three segments, represent urban, rural and motorway driving. Based on the test results NOx, PM, HC were less emitted form SCR vehicle than EGR vehicle. And CO was less emitted form EGR vehicle than SCR vehicle due to CO oxidation reaction on DPF surface. And most air pollutants reduced as average vehicle speed increased. Pollutants were less emitted on motorway section than urban and rural sections. But highly NOx emission on motorway section was verified according to increased EGR ratio on fast vehicle speed. HC and CO additional emission was identified as 68%, 58% respectively during SCR vehicle's cold engine start emission test. NOx additional emission was detected by 24% on SCR vehicle's condition of engine cold start while not detected on vehicle equipped with EGR. SCR vehicle's additional NOx emission was derived from low reaction temperature during engine cold start condition. medium-duty truck emission characteristics were investigated in this study and expected to used to improve air pollutants management policy of medium-duty truck equipped with SCR & EGR.