• Title/Summary/Keyword: Charging schedule optimization

Search Result 6, Processing Time 0.022 seconds

Study on BESS Charging and Discharging Scheduling Using Particle Swarm Optimization (입자 군집 최적화를 이용한 전지전력저장시스템의 충·방전 운전계획에 관한 연구)

  • Park, Hyang-A;Kim, Seul-Ki;Kim, Eung-Sang;Yu, Jung-Won;Kim, Sung-Shin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.547-554
    • /
    • 2016
  • Analyze the customer daily load patterns, be used to determine the optimal charging and discharging schedule which can minimize the electrical charges through the battery energy storage system(BESS) installed in consumers is an object of this paper. BESS, which analyzes the load characteristics of customer and reduce the peak load, is essential for optimal charging and discharging scheduling to save electricity charges. This thesis proposes optimal charging and discharging scheduling method, using particle swarm optimization (PSO) and penalty function method, of BESS for reducing energy charge. Since PSO is a global optimization algorithm, best charging and discharging scheduling can be found effectively. In addition, penalty function method was combined with PSO in order to handle many constraint conditions. After analysing the load patterns of target BESS, PSO based on penalty function method was applied to get optimal charging and discharging schedule.

Revenue Maximizing Scheduling for a Fast Electric Vehicle Charging Station with Solar PV and ESS

  • Leon, Nishimwe H.;Yoon, Sung-Guk
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.3
    • /
    • pp.315-319
    • /
    • 2020
  • The modern transportation and mobility sector is expected to encounter high penetration of Electric Vehicles (EVs) because EVs contribute to reducing the harmful emissions from fossil fuel-powered vehicles. With the prospective growth of EVs, sufficient and convenient facilities for fast charging are crucial toward satisfying the EVs' quick charging demand during their trip. Therefore, the Fast Electric Vehicle Charging Stations (FECS) will be a similar role to gas stations. In this paper, we study a charging scheduling problem for the FECS with solar photovoltaic (PV) and an Energy Storage System (ESS). We formulate an optimization problem that minimizes the operational costs of FECS. There are two cost and one revenue terms that are buying cost from main grid power, ESS degradation cost, and revenue from the charging fee of the EVs. Simulation results show that the proposed scheduling algorithm reduces the daily operational cost by effectively using solar PV and ESS.

Comparison of Intelligent Charging Algorithms for Electric Vehicles to Reduce Peak Load and Demand Variability in a Distribution Grid

  • Mets, Kevin;D'hulst, Reinhilde;Develder, Chris
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.672-681
    • /
    • 2012
  • A potential breakthrough of the electrification of the vehicle fleet will incur a steep rise in the load on the electrical power grid. To avoid huge grid investments, coordinated charging of those vehicles is a must. In this paper, we assess algorithms to schedule charging of plug-in (hybrid) electric vehicles as to minimize the additional peak load they might cause. We first introduce two approaches, one based on a classical optimization approach using quadratic programming, and a second one, market based coordination, which is a multi-agent system that uses bidding on a virtual market to reach an equilibrium price that matches demand and supply. We benchmark these two methods against each other, as well as to a baseline scenario of uncontrolled charging. Our simulation results covering a residential area with 63 households show that controlled charging reduces peak load, load variability, and deviations from the nominal grid voltage.

Development of ESS Scheduling Algorithm to Maximize the Potential Profitability of PV Generation Supplier in South Korea

  • Kong, Junhyuk;Jufri, Fauzan Hanif;Kang, Byung O;Jung, Jaesung
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2227-2235
    • /
    • 2018
  • Under the current policies and compensation rules in South Korea, Photovoltaic (PV) generation supplier can maximize the profit by combining PV generation with Energy Storage System (ESS). However, the existing operational strategy of ESS is not able to maximize the profit due to the limitation of ESS capacity. In this paper, new ESS scheduling algorithm is introduced by utilizing the System Marginal Price (SMP) and PV generation forecasting to maximize the profits of PV generation supplier. The proposed algorithm determines the charging time of ESS by ranking the charging schedule from low to high SMP when PV generation is more than enough to charge ESS. The discharging time of ESS is determined by ranking the discharging schedule from high to low SMP when ESS energy is not enough to maintain the discharging. To compensate forecasting error, the algorithm is updated every hour to apply the up-to-date information. The simulation is performed to verify the effectiveness of the proposed algorithm by using actual PV generation and ESS information.

Optimal Capacity Determination Method of Battery Energy Storage System for Demand Management of Electricity Customer (수용가 수요관리용 전지전력저장시스템의 최적용량 산정방법)

  • Cho, Kyeong-Hee;Kim, Seul-Ki;Kim, Eung-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.1
    • /
    • pp.21-28
    • /
    • 2013
  • The paper proposes an optimal sizing method of a customer's battery energy storage system (BESS) which aims at managing the electricity demand of the customer to minimize electricity cost under the time of use(TOU) pricing. Peak load limit of the customer and charging and discharging schedules of the BESS are optimized on annual basis to minimize annual electricity cost, which consists of peak load related basic cost and actual usage cost. The optimal scheduling is used to assess the maximum cost savings for all sets of candidate capacities of BESS. An optimal size of BESS is determined from the cost saving curves via capacity of BESS. Case study uses real data from an apartment-type factory customer and shows how the proposed method can be employed to optimally design the size of BESS for customer demand management.

Smart Electric Mobility Operating System Integrated with Off-Grid Solar Power Plants in Tanzania: Vision and Trial Run (탄자니아의 태양광 발전소와 통합된 전기 모빌리티 운영 시스템 : 비전과 시범운행)

  • Rhee, Hyop-Seung;Im, Hyuck-Soon;Manongi, Frank Andrew;Shin, Young-In;Song, Ho-Won;Jung, Woo-Kyun;Ahn, Sung-Hoon
    • Journal of Appropriate Technology
    • /
    • v.7 no.2
    • /
    • pp.127-135
    • /
    • 2021
  • To respond to the threat of global warming, countries around the world are promoting the spread of renewable energy and reduction of carbon emissions. In accordance with the United Nation's Sustainable Development Goal to combat climate change and its impacts, global automakers are pushing for a full transition to electric vehicles within the next 10 years. Electric vehicles can be a useful means for reducing carbon emissions, but in order to reduce carbon generated in the stage of producing electricity for charging, a power generation system using eco-friendly renewable energy is required. In this study, we propose a smart electric mobility operating system integrated with off-grid solar power plants established in Tanzania, Africa. By applying smart monitoring and communication functions based on Arduino-based computing devices, information such as remaining battery capacity, battery status, location, speed, altitude, and road conditions of an electric vehicle or electric motorcycle is monitored. In addition, we present a scenario that communicates with the surrounding independent solar power plant infrastructure to predict the drivable distance and optimize the charging schedule and route to the destination. The feasibility of the proposed system was verified through test runs of electric motorcycles. In considering local environmental characteristics in Tanzania for the operation of the electric mobility system, factors such as eco-friendliness, economic feasibility, ease of operation, and compatibility should be weighed. The smart electric mobility operating system proposed in this study can be an important basis for implementing the SDGs' climate change response.