• 제목/요약/키워드: Charging load

검색결과 253건 처리시간 0.026초

항공장비용 환경제어시스템의 운전특성에 관한 실험적 연구 (Experimental Study on the Operating Characteristics of an Environmental Control System for Avionic Equipments)

  • 박형필;강훈;지용남;최희주;변영만;김영진;오광윤;김용찬
    • 대한기계학회논문집B
    • /
    • 제34권9호
    • /
    • pp.809-816
    • /
    • 2010
  • 환경제어시스템은 항공전자장비로부터의 열부하를 제거하기 위한 목적으로 설치되어지며, 본 환경제어시스템은 제어변수의 변화에 따라 다양한 운전특성을 나타낸다. 본 연구에서는 냉매 R-124를 작동유체로 하는 증기압축 사이클 방식을 적용한 환경제어시스템을 설계 및 제작하였다. 냉매충전량, 팽창밸브개도, 압축기 및 송풍기 운전회전수와 같은 제어변수의 변화에 따른 환경제어시스템의 성능 및 운전 특성 변화를 실험하였다. 각 제어변수가 시스템에 미치는 영향을 분석하였으며, 최적제어를 위한 방안을 제안하였다.

3-연소실형 GDI Engine의 성능 및 배기 배출물 특성에 관한 연구 (Study on the Characteristics of Performance and Exhaust Emissions of 3-Chamber GDI Engine)

  • 김봉수;정남훈;진선호;배종욱
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권1호
    • /
    • pp.37-47
    • /
    • 2002
  • Recently gasoline direct injection method has been applied to gasoline engine to reduce fuel consumption rate by controlling fuel air mixture on lean condition by means of stratified charging, and to reduce simultaneously. Pollutant emissions especially NOx and CO by lowering the combustion temperature. But difficulty of controling local fuel air ratio at ignition area in flammability limit unavoidably appeared, because it is merely controlled by injection timing with spatial and temporal distribution of fuel mixture. In this study, the authors devised a uniquely shaped combustion chamber so called three-chamber GDI engine, intended to keep the more reliable fuel air ratio at ignition area. The combustion chamber is divided into three regions. The first region is in the rich combustion division, where the fuel is injected from the fuel injection valve and ignited by the spark plug. The second region is in the lean combustion division, where the combustion gas from the rich combustion division flows out and burns on lean condition. And the last region is in the main combustion division ie in the cylinder, where the gas from the above two combustion divisions mixed together and completes the combustion during expansion stroke. They found that the stable range of operation of three-chamber GDI engine on low-load condition exists in the lean area of average equivalence ratio. And they also found that the reformed engine reveals less specific fuel consumption and less pollutant emissions compared with conventional carburettor type gasoline engine.

Influence of Lithiation on Nanomechanical Properties of Silicon Nanowires Probed with Atomic Force Microscopy

  • Lee, Hyun-Soo;Shin, Weon-Ho;Kwon, Sang-Ku;Choi, Jang-Wook;Park, Jeong-Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.110-110
    • /
    • 2011
  • The nanomechanical properties of fully lithiated and unlithiated silicon nanowire deposited on silicon substrate have been studied with atomic force microscopy. Silicon nanowires were synthesized using the vapor-liquid-solid process on stainless steel substrates using Au catalyst. Fully lithiated silicon nanowires were obtained by using the electrochemical method, followed by drop-casting on the silicon substrate. The roughness, derived from a line profile of the surface measured in contact mode atomic force microscopy, has a smaller value for lithiated silicon nanowire and a higher value for unlithiated silicon nanowire. Force spectroscopy was utilitzed to study the influence of lithiation on the tip-surface adhesion force. Lithiated silicon nanowire revealed a smaller value than that of the Si nanowire substrate by a factor of two, while the adhesion force of the silicon nanowire is similar to that of the silicon substrate. The Young's modulus obtained from the force-distance curve, also shows that the unlithiated silicon nanowire has a relatively higher value than lithiated silicon nanowire due to the elastically soft amorphous structures. The frictional forces acting on the tip sliding on the surface of lithiated and unlithiated silicon nanowire were obtained within the range of 0.5-4.0 Hz and 0.01-200 nN for velocity and load dependency, respectively. We explain the trend of adhesion and modulus in light of the materials properties of silicon and lithiated silicon. The results suggest a useful method for chemical identification of the lithiated region during the charging and discharging process.

  • PDF

3관식 시스템 히트펌프의 충전량 변화에 따른 성능 특성에 관한 연구 (The performance of a heat pump with 3-piping system at various charging conditions)

  • 송인식;최종민;주영주;정현준;강훈;김용찬
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.288-293
    • /
    • 2008
  • The cooling load in winter is significant in many commercial buildings and hotels because of the usage of office equipments and the high efficiency of wall insulation. The development of a multi-heat pump that can cover heating and cooling simultaneously for each indoor unit is required. In this study, the performance of a multi-heat pump with 3-piping system was investigated as a function of refrigerant charge and its performance was analyzed in cooling mode, heating mode, and heat recovery mode. COP in the heating or cooling mode showed little dependence on refrigerant charge at overcharge conditions, while those were strongly dependent on refrigerant charge at undercharge conditions and outdoor inlet temperature. In the heat recovery mode, the performance of the system was very sensitive to charge amount at all conditions. Optimum charge amount in the heat recovery mode was 14% lower than that in the cooling mode at the standard condition because the refrigerant only passed the indoor units. It is required to store the excessive refrigerant charge in a storage tank to optimize the system performance at operating modes.

  • PDF

MATLAB/Simulink를 이용한 오프그리드형 고효율 태양광 충전 시스템 설계 (Design of an Off Grid type High efficiency Solar charging system Using MATLAB/Simulink)

  • 미흐렛 가아브레슬라세 마루;김민;변기식;김관형
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 춘계학술대회
    • /
    • pp.735-737
    • /
    • 2017
  • An Off grid or remote solar electric systems are an energy supply to our home or to our companies without the utility of Grid at all. Off grid solar systems are very important for those who live in remote locations especially for developing countries where getting the electric grid is extremely expensive, inconvenient or for those who doesn't need to pay a monthly bill with the electric bill in general. The main critical components of any solar power system or renewable energy harvesting systems are the energy storage systems and its charge controller system. Energy storage systems are the essential integral part of a solar energy harvesting system and in general for all renewable energy harvesting systems. To provide an optimal solution of both high power density and high energy density at the same time we have to use hybrid energy storage systems (HESS), that combine two or more energy storage technologies with complementary characteristics. In this present work, design and simulation we use two storage systems supercapacitor for high power density and lithium based battery for high energy density. Here the system incorporates fast-response supercapacitors to provide power to manage solar smoothing and uses a battery for load shifting. On this paper discuss that the total energy throughout of the battery is much reduced and the typical thermal stresses caused by high discharge rate responses are mitigated by integrating supercapacitors with the battery storage system. In addition of the above discussion the off grid solar electric energy harvesting presented in this research paper includes battery and supercapacitor management system, MPPT (maximum power point tracking) system and back/boost convertors. On this present work the entire model of off grid electric energy harvesting system and all other functional blocks of that system is implemented in MATLAB Simulink.

  • PDF

에너지 저장장치를 갖는 고 전력밀도 및 저가격형 태양광 인버터 시스템 (High Power Density and Low Cost Photovoltaic Power Conditioning System with Energy Storage System)

  • 금문환;장두희;홍성수;한상규;사공석진
    • 전력전자학회논문지
    • /
    • 제16권6호
    • /
    • pp.587-593
    • /
    • 2011
  • 본 논문에서는 고 전력밀도 및 저가형으로 구성 가능한 새로운 구조의 계통 연계형 태양광 인버터 시스템을 제안한다. 제안 시스템은 태양전지의 최대 전력점 추종기능과 배터리의 충 방전 기능을 단일 전력단으로 구성함으로써, 고 전력밀도 및 저가격형 시스템 구성이 가능하다. 또한, 제안 시스템은 배터리를 링크 캐패시터에 직렬 연결함으로써 링크 캐패시터의 전압 스트레스를 배터리 전압만큼 저감할 수 있으므로 가격저감 효과가 크다. 최종적으로 제안 시스템의 우수성과 신뢰성 검증을 위하여 1.5kW급 태양광 인버터 시스템의 시작품을 제작하였고, 이를 이용한 실험결과를 바탕으로 제안 시스템의 타당성을 검증한다.

동시냉난방 히트펌프의 냉매 충전량과 운전모드 변화에 따른 성능특성에 관한 연구 (The Performance of a Simultaneous Heat and Cooling Heat Pump at Various Charging Conditions)

  • 송인식;최종민;주영주;정현준;강훈;김용찬
    • 설비공학논문집
    • /
    • 제20권7호
    • /
    • pp.492-499
    • /
    • 2008
  • The cooling load in winter is significant in many commercial buildings and hotels because of the usage of office equipments and the high efficiency of wall insulation. The development of a multi-heat pump that can cover heating and cooling simultaneously for each indoor unit is required. In this study, the performance of a multi-heat pump with 3-piping system was investigated as a function of refrigerant charge and its performance was analyzed in cooling mode, heating mode, and heat recovery mode. COP in the heating or cooling mode showed little dependence on refrigerant charge at overcharge conditions, while those were strongly dependent on refrigerant charge at undercharge conditions and outdoor inlet temperature. In the heat recovery mode, the performance of the system was very sensitive to charge amount at all conditions. Optimum charge amount in the heat recovery mode was 14% lower than that in the cooling mode at the standard condition because the refrigerant only passed the indoor units. It is required to store the excessive refrigerant charge in a storage tank to optimize the system performance at operating modes.

배터리 내장형 초소형 태양광 장치용 PV MPPT 및 충방전 제어 알고리즘 (The PV MPPT & Charge and Discharge Algorithm for the Battery Included Solar Cell Applications)

  • 김승민;박봉희;최주엽;최익;이상철;이동하
    • 한국태양에너지학회 논문집
    • /
    • 제33권5호
    • /
    • pp.69-75
    • /
    • 2013
  • To increase the efficiency of the photovoltaic, almost photovoltaic appliances are controlled by Maximum Power Point Tracking(MPPT). Existing most of the PV MPPT techniques have used power which multiplies sensed output current and voltage of the solar cell. However, these algorithms are unnecessarily complicated and too expensive for small and compact system. The other hand, the proposed MPPT technique is only one sensing of the MPPT converter's output current, so there is no need to insert another sensors of battery side. Therefore, this algorithm is simpler compared to the traditional approach and is suitable for low power solar system. Further, the novel proper charge/discharge algorithm for the battery with PV MPPT is developed. In this algorithm, there is CC battery charge mode and load discharge mode of the PV cell & battery dual. Also we design current control to regulate allowable current during the battery charging. The proposed algorithm will be applicable to battery included solar cell applications like solar lantern and solar remote control car. Finally, the proposed method has been verified with computer simulation.

수중 환경에서 고분자 전해질 연료전지(PEMFC) 공급용 수소 생산을 위한 가압 디젤 개질시스템에 관한 연구 (Study on Pressurized Diesel Reforming System for Polymer Electrolyte Membrane Fuel Cell in Underwater Environment)

  • 이광호;한광우;배중면
    • 한국군사과학기술학회지
    • /
    • 제20권4호
    • /
    • pp.528-535
    • /
    • 2017
  • Fuel cells have been spotlighted in the world for being highly efficient and environmentally friendly. A hydrogen which is the fuel of fuel cell can be obtained from a number of sources. Hydrogen source for operating the polymer electrolyte membrane fuel cell(PEMFC) in the current underwater environment, such as a submarine and unmanned underwater vehicles are currently from the metal hydride cylinder. However, metal hydride has many limitations for using hydrogen carrier, such as large volume, long charging time, limited storage capacity. To solve these problems, we suggest diesel reformer for hydrogen supply source. Diesel fuel has many advantages, such as high hydrogen storage density, easy to transport and also well-infra structure. However, conventional diesel reforming system for PEMFC requires a large volume and complex CO removal system for lowering the CO level to less than 10 ppm. In addition, because the preferential oxidation(PROX) reaction is the strong exothermic reaction, cooling load is required. By changing this PROX reactor to hydrogen separation membrane, the problem from PROX reactor can be solved. This is because hydrogen separation membranes are small and permeable to pure hydrogen. In this study, we conducted the pressurized diesel reforming and water-gas shift reaction experiment for the hydrogen separation membrane application. Then, the hydrogen permeation experiments were performed using a Pd alloy membrane for the reformate gas.

Analysis and Design of a Multi-resonant Converter with a Wide Output Voltage Range for EV Charger Applications

  • Sun, Wenjin;Jin, Xiang;Zhang, Li;Hu, Haibing;Xing, Yan
    • Journal of Power Electronics
    • /
    • 제17권4호
    • /
    • pp.849-859
    • /
    • 2017
  • This paper illustrates the analysis and design of a multi-resonant converter applied to an electric vehicle (EV) charger. Thanks to the notch resonant characteristic, the multi-resonant converter achieve soft switching and operate with a narrowed switching frequency range even with a wide output voltage range. These advantages make it suitable for battery charging applications. With two more resonant elements, the design of the chosen converter is more complex than the conventional LLC resonant converter. However, there is not a distinct design outline for the multi-resonant converters in existing articles. According to the analysis in this paper, the normalized notch frequency $f_{r2n}$ and the second series resonant frequency $f_{r3n}$ are more sensitive to the notch capacitor ratio q than the notch inductor ratio k. Then resonant capacitors should be well-designed before the other resonant elements. The peak gain of the converter depends mainly on the magnetizing inductor ratio $L_n$ and the normalized load Q. And it requires a smaller $L_n$ and Q to provide a sufficient voltage gain $M_{max}$ at ($V_{o\_max}$, $P_{o\_max}$). However, the primary current increases with $(L_nQ)^{-1}$, and results in a low efficiency. Then a detailed design procedure for the multi-resonant converter has been provided. A 3.3kW prototype with an output voltage range of 50V to 500V dc and a peak efficiency of 97.3 % is built to verify the design and effectiveness of the converter.