• Title/Summary/Keyword: Charging circuits

Search Result 67, Processing Time 0.019 seconds

Optimal Design of Resonant Network Considering Power Loss in 7.2kW Integrated Bi-directional OBC/LDC (7.2kW급 통합형 양방향 OBC/LDC 모듈의 전력 손실을 고려한 공진 네트워크 최적 설계)

  • Song, Seong-Il;Noh, Jeong-Hun;Kang, Cheol-Ha;Yoon, Jae-Eun;Hur, Deog-Jae
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.1
    • /
    • pp.21-28
    • /
    • 2020
  • Integrated bidirectional OBC/LDC was developed to reduce the volume for elements, avoid space restriction, and increase efficiency in EV vehicles. In this study, a DC-DC converter in integrated OBC/LDC circuits was composed of an SRC circuit with a stable output voltage relative to an LLC circuit using a theoretical method and simulation. The resonant network of the selected circuit was optimized to minimize the power loss and element volume under constraints for the buck converter and the battery charging range. Moreover, the validity of the optimal model was verified through an analysis using a theoretical method and a numerical analysis based on power loss at the optimized resonant frequency.

Leakage Current Energy Harvesting Application in a Photovoltaic (PV) Panel Transformerless Inverter System

  • Khan, Md. Noman Habib;Khan, Sheroz
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.4
    • /
    • pp.190-194
    • /
    • 2017
  • Present-day solar panels incorporate inverters as their core components. Switching devices driven by specialized power controllers are operated in a transformerless inverter topology. However, some challenges associated with this configuration include the absence of isolation, causing leakage currents to flow through various components toward ground. This inevitably causes power losses, often being also the primary reason for the power inverters' analog equipment failure. In this paper, various aspects of the leakage currents are studied using different circuit analysis methods. The primary objective is to convert the leakage current energy into a usable DC voltage source. The research is focused on harvesting the leakage currents for producing circa 1.1 V, derived from recently developed rectifier circuits, and driving a $200{\Omega}$ load with a power in the milliwatt range. Even though the output voltage level is low, the harvested power could be used for charging small batteries or capacitors, even driving light loads.

A Study on High Performance Operation of Hybrid Energy Recovery Drive System for Piezoelectric Pump (피에조 펌프 구동용 에너지 회수형 하이브리드 구동장치 고성능 운전에 관한 연구)

  • Hong, Sun-Ki;Lee, Jung-Seop;Cho, Yong-Ho;Kim, Ki-Seok;Kang, Tae-Sam
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.10
    • /
    • pp.1426-1431
    • /
    • 2015
  • Piezoelectric pump can be considered as R-C load and it needs something special driver because the output voltage does not become 0 even though the applied voltage is 0 with common converter. This operating system consists of fly-back converter to increase the input voltage and energy recovery inverter to apply square voltage to the piezoelectric pump. The energy recovery inverter can charge and discharge the energy of capacitive load. In this paper, to enhance performance of the driver, a few elements or circuits are added and modified. To drive the inverter safely, current limit resister is added and adjusted the value to valance the charging and discharging current. In addition, a current limit inductor is added to the input side to limit the input current and enhance the efficiency. Inductor only may make oscillation and another resister is added parallel to the inductor to solve this problem. The converter and inveter are assembled to one board for compactness. The appropriateness is proved with simulation and experiments.

Establishment of Sewage Collection Measure and Charging Automation System (분뇨수거량 계량 및 청소요금시스템)

  • Hong, Dae-Seung;Lee, Jang-Hun;Kang, Sun-Hong;Yim, Hwa-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.5
    • /
    • pp.487-492
    • /
    • 2010
  • In this study, our system that the volume of collected human waste in the septic tank truck is measured accurately and the fee of disposing human waste can be calculated by using measured results has been developed. The level sensor and its circuits which can measure the height of the tank, the hand-held system that can be used by workers easily and simply with micro-controller have been developed. Also, this system has been built in the receipt printing function to charge for disposal fee. Even when working on a sloping field, this system can measure the accurate collected volume of human waste in the tank using the X-Y axis angle sensor. The results of this study expect that the popular complaints that generated from human waste can be reduced, the exportation possibility of our specialized systems can acquire foreign currency.

An Optimal Design of a Driving Mechanism for Air Circuit Breaker using Taguchi Design of Experiments (다구찌실험계획법을 활용한 기중차단기의 메커니즘 최적화)

  • Park, Woo-Jin;Park, Yong-ik;Ahn, Kil-Young;Cho, Hae-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.78-84
    • /
    • 2022
  • An air circuit breaker (ACB) is an electrical protection device that interrupts abnormal fault currents that result from overloads or short circuits in a low-voltage power distribution line. The ACB consists of a main circuit part for current flow, mechanism part for the opening and closing operation of movable conductors, and arc-extinguishing part for arc extinction during the breaking operation. The driving mechanism of the ACB is a spring energy charging type. The faster the contact opening speed of the movable conductors during the opening process, the better the breaking performance. However, there is a disadvantage that the durability of mechanism decreases in inverse proportion to the use of a spring capable of accumulating high energy to configure the breaking speed faster. Therefore, to simultaneously satisfy the breaking performance and mechanical endurance of the ACB, its driving mechanism must be optimized. In this study, a dynamic model of the ACB was developed using the MDO(Mechanism Dynamics Option) module of CREO, which is widely used in multibody dynamics analysis. To improve the opening velocity, the Taguchi design method was applied to optimize the design parameters of an ACB with many linkages. In addition, to evaluate the improvement in the operating characteristics, the simulation and experimental results were compared with the MDO model and improved prototype sample, respectively.

Poly(Imide) Separator Functionalized by Melamine Phosphonic Acid for Regulating Structural and Thermal Stabilities of Lithiumion Batteries

  • Ye Jin Jeon;Juhwi Park;Taeeun Yim
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.365-372
    • /
    • 2024
  • As the energy density of lithium-ion batteries (LIBs) continues to increase, various separators are being developed to with the aim of improving the safety performance. Although poly(imide) (PI)-based separators are widely used, it is difficult to control their pore size and distribution, and this may further increase the risk associated. Herein, a melamine phosphonic acid (MP)-coated PI separator that can effectively control the pore structure of the substrate is suggested as a remedy. After the MP material is embedded into the PI separator with a simple one-step casting process, it effectively clogs the large pores of the PI separator, preventing the occurrence of internal short circuits during charging. It is anticipated that the MP material can also suppress rapid thermal runaway upon cycling due to its ability to reduce the internal temperature of the LIB cell caused by the desirable endothermic behavior around 300℃. According to experiments, the MP-coated PI separator not only decreases the thermal shrinkage rate better than commercial poly(ethylene) (PE) separators but also exhibits a desirable Gurley number (109.6 s/100 cc) and electrolyte uptake rate (240%), which is unique. The proposed separator is electrochemically stable in the range 0.0-5.0 V (vs. Li/Li+), which is the typical working potential of conventional electrode materials. In practice, the MP-coated PI separator exhibits stable cycling performance in a graphite-LiNi0.83Co0.10Mn0.07O2 full cell without an internal short circuit (retention: 90.3%).

A Low Area and High Efficiency SMPS with a PWM Generator Based on a Pseudo Relaxation-Oscillating Technique (Pseudo Relaxation-Oscillating 기법의 PWM 발생기를 이용한 저면적, 고효율 SMPS)

  • Lim, Ji-Hoon;Wee, Jae-Kyung;Song, Inchae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.70-77
    • /
    • 2013
  • We suggest a low area and high efficiency switched-mode power supply (SMPS) with a pulse width modulation (PWM) generator based on a pseudo relaxation-oscillating technique. In the proposed circuit, the PWM duty ratio is determined by the voltage slope control of an internal capacitor according to amount of charging current in a PWM generator. Compared to conventional SMPSs, the proposed control method consists of a simple structure without the filter circuits needed for an analog-controlled SMPS or the digital compensator used by a digitally-controlled SMPS. The proposed circuit is able to operate at switching frequency of 1MHz~10MHz, as this frequency can be controlled from the selection of one of the internal capacitors in a PWM generator. The maximum current of the core circuit is 2.7 mA, and the total current of the entire circuit including output buffer driver is 15 mA at 10 MHz switching frequency. The proposed SMPS has a simulated maximum ripple voltage of 7mV. In this paper, to verify the operation of the proposed circuit, we performed simulation using Dongbu Hitek BCD $0.35{\mu}m$ technology and measured the proposed circuit.