• Title/Summary/Keyword: Charging System

검색결과 1,149건 처리시간 0.033초

선택적 충전단계절환에 의한 Ni-MH 전지의 계단충전 특성 개선 (Improvement of Step-charging Characteristic for Ni-MH Battery by Selective Cut-off Method)

  • 안재영;강신영;김광헌;임영철
    • 전력전자학회논문지
    • /
    • 제3권4호
    • /
    • pp.273-279
    • /
    • 1998
  • 본 논문에서는 제안하는 계단충전방식에서는 직렬로 연결된 전지에 있어서 각 전지의 $\Delta$V=0 시점이 서로 다름을 고려하여 각 전지별로 선택적으로 충전단계를 절환시킴으로써 과충전 또는 부족충전을 예방할 수 있도록 하였다. 또한, 각 단계의 초기에 전지간의 잔존용량의 불균등을 해소하기 위해 시분할 균등충전모드를 추가하였다. 기존의 계단충전방식에 비해 선택적 충전단계절환을 위한 간단한 회로가 추가되지만 과충전과 부족충전을 예방하므로 전지수명과 충전효율을 개선시킬 수 있다.

  • PDF

Li-ion 배터리 충/방전 시스템의 안정적 운영에 관한 연구 (A Study on Stable Operation of Li-ion Battery Charging/Discharging System)

  • 여성대;한철규;조태일;이경량;김성권
    • 한국전자통신학회논문지
    • /
    • 제11권4호
    • /
    • pp.395-402
    • /
    • 2016
  • DC ${\mu}$-Grid 기반의 충/방전 시스템에서 배터리의 동작 변환 시, 망 전압의 fluctuation이 발생하게 되며, 과다한 fluctuation은 충/방전 시스템의 손상 및 고장을 일으킬 수 있다. 따라서 본 논문에서는 DC ${\mu}$-Grid 기반의 충/방전 시스템에서 fluctuation 완화용 커패시터의 적용 및 설계 포인트에 대하여 연구하였다. 컴퓨터 시뮬레이션 결과, 3개의 충전 배터리 set와 5개의 방전 배터리 set의 조건으로 운영되는 DC ${\mu}$-Grid 기반 충/방전 시스템에서 600V/35mF의 초기 값을 갖는 fluctuation 완화용 커패시터를 적용하였을 때 충/방전에 의한 fluctuation을 약 66.3% 감소시킬 수 있었으며, 추가적으로 초기 망 전압 안정화 시 발생하는 fluctuation 또한 약 73% 감소시킬 수 있었다.

CAN 통신 기반 충전 모니터링 시스템 설계 및 구현 (Design and Implementation of Charger Monitoring System Based on CAN Protocol)

  • 추연규;김현덕
    • 한국정보통신학회논문지
    • /
    • 제16권3호
    • /
    • pp.541-548
    • /
    • 2012
  • 본 논문에서는 전기자동차의 보급 확대에 따른 충전 인프라 구축을 위해서 차량의 충전 시 충전상태를 모니터링 할 수 있는 충전 모니터링 시스템의 설계 방법을 제안하였다. 급속충전 기술은 현재 battery의 성능 및 안전성 등 다양한 요인에 따라 동작성능이 좌우되므로 모니터링 시스템에 의한 충전상태 파악은 충전 알고리즘의 개선, 전기자동차 BMS와 연동, 사용자와의 충전 프로세스 제어 등 다양한 작업환경과 연계되어 있다. 급속충전시스템의 동작상태를 CAN 프로토콜을 이용하여 배터리의 충전 상태 등을 실시간으로 감시가 가능한 시스템을 설계 제작하여 전기자동차용 battery를 최단시간에 최적화된 상태로 충전 가능하도록 CAN 통신기반 급속충전 모니터링 시스템을 설계하는 방법을 제안하고 시스템을 구현하여 성능을 확인하였다.

다기능 인버터의 손실저감을 위한 Buck-Type 충전기법 (Buck-Type Charging Method for Loss Reduction of Multi-Function Inverter)

  • 김동희;우동균;이병국
    • 전기학회논문지
    • /
    • 제60권8호
    • /
    • pp.1523-1528
    • /
    • 2011
  • This paper proposes buck-type charging method using motor inductance, 3-phase inverter and bi-directional converter without an additional charger in plug-in hybrid electric vehicles. The proposed system has advantages over the conventional system such as high charging efficiency, high power factor, and low total harmonic distortion. The validity of each methods are verified by theoretical analysis and simulation.

Furtive 충전을 활용한 전기식 Yard tractor (Electric Yard Tractor with Furtive Charging)

  • 이동수;임동남;전성즙;고영석
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2014년도 전력전자학술대회 논문집
    • /
    • pp.482-483
    • /
    • 2014
  • In this paper, an electric yard tractor (YT) with furtive charging system is investigated. YT is one of pollution sources in container terminals. The furtive charging system does not impose difficulties on YT day-schedule because charging is performed when a YT is waiting under RTGC (Rubber Type Gantry crane) or Quay-wall crane.

  • PDF

The smart EV charging system based on the big data analysis of the power consumption patterns

  • Kang, Hun-Cheol;Kang, Ki-Beom;Ahn, Hyun-kwon;Lee, Seong-Hyun;Ahn, Tae-Hyo;Jwa, Jeong-Woo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제9권2호
    • /
    • pp.1-10
    • /
    • 2017
  • The high costs of electric vehicle supply equipment (EVSE) and installation are currently a stumbling block to the proliferation of electric vehicles (EVs). The cost-effective solutions are needed to support the expansion of charging infrastructure. In this paper, we develope EV charging system based on the big data analysis of the power consumption patterns. The developed EV charging system is consisted of the smart EV outlet, gateways, powergates, the big data management system, and mobile applications. The smart EV outlet is designed to low costs of equipment and installation by replacing the existing 220V outlet. We can connect the smart EV outlet to household appliances. Z-wave technology is used in the smart EV outlet to provide the EV power usage to users using Apps. The smart EV outlet provides 220V EV charging and therefore, we can restore vehicle driving range during overnight and work hours.

EV용 충전 인덕터용 PFC 및 제로 토크제어 (PFC and Zero Torque Control of SRM for EV Battery Charging)

  • ;;;이동희;안진우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.652-654
    • /
    • 2015
  • Integrated switched reluctance motor drive as an electric vehicle battery charger is presented in this paper. The SRM, which is used as the traction power in the driving mode, is used in the charge circuit to improve the power factor of charging system. The charging circuit can share the power switches of the asymmetric converter and phase windings of SRM to charge the battery, and can reduce the size and cost of the system in the plug-in system. To keep the rotor at standstill, zero torque control method is proposed. Since the inductances of the SRM windings are not same at any stop position, the charger controller controls the reference current to satisfy the total charging current with PFC and zero torque condition. A novel cubic equation method is proposed as a current reference distributor of the charging controller. Simulations are performed by MATLAB software and results satisfy the Effectiveness of proposed battery charging system.

  • PDF

Optimal Scheduling of Electric Vehicles Charging in low-Voltage Distribution Systems

  • Xu, Shaolun;Zhang, Liang;Yan, Zheng;Feng, Donghan;Wang, Gang;Zhao, Xiaobo
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권4호
    • /
    • pp.810-819
    • /
    • 2016
  • Uncoordinated charging of large-scale electric vehicles (EVs) will have a negative impact on the secure and economic operation of the power system, especially at the distribution level. Given that the charging load of EVs can be controlled to some extent, research on the optimal charging control of EVs has been extensively carried out. In this paper, two possible smart charging scenarios in China are studied: centralized optimal charging operated by an aggregator and decentralized optimal charging managed by individual users. Under the assumption that the aggregators and individual users only concern the economic benefits, new load peaks will arise under time of use (TOU) pricing which is extensively employed in China. To solve this problem, a simple incentive mechanism is proposed for centralized optimal charging while a rolling-update pricing scheme is devised for decentralized optimal charging. The original optimal charging models are modified to account for the developed schemes. Simulated tests corroborate the efficacy of optimal scheduling for charging EVs in various scenarios.

Effect of Hydrogen Charging on the Mechanical Properties of 304 Stainless Steels

  • Lee, Sang-Pill;Hwang, Seung-Kuk;Lee, Jin-Kyung;Son, In-Soo;Bae, Dong-Su
    • 동력기계공학회지
    • /
    • 제19권5호
    • /
    • pp.73-79
    • /
    • 2015
  • The effects of hydrogen charging on the mechanical properties of 304 stainless steels were investigated in conjunction with the detailed examinations of their fracture modes. The dependence of the absorbed impact energy and the surface hardness of the 304 stainless steels on the hydrogen charging time was characterized. The tensile properties of the 304 stainless steels by the variation of cross-head speed were also evaluated at the room temperature. The hydrogen charging was performed by an electrolysis method for all specimens of the 304 stainless steels. The mechanical properties of the 304 stainless steels exhibited the sensitivity of embrittlement due to a hydrogen charging. The correlation between mechanical properties and fracture surfaces was discussed.

Mechanism Development and Position Control of Smart Buoy Robot

  • Park, Hwi-Geun;Kim, Hyun-Sik
    • 한국해양공학회지
    • /
    • 제35권4호
    • /
    • pp.305-312
    • /
    • 2021
  • There is a gradual increase in the need for energy charging in marine environments because of energy limitations experienced by electric ships and marine robots. Buoys are considered potential energy charging systems, but there are several challenges, which include the need to maintain a fixed position and avoid hazards, dock with ships and robots in order to charge them, be robust to actions by birds, ships, and robots. To solve these problems, this study proposes a smart buoy robot that has multiple thrusters, multiple docking and charging parts, a bird spike, a radar reflector, a light, a camera, and an anchor, and its mechanism is developed. To verify the performance of the smart buoy robot, the position control under disturbance due to wave currents and functional tests such as docking, charging, lighting, and anchoring are performed. Experimental results show that the smart buoy robot can operate under disturbances and is functionally effective. Therefore, the smart buoy robot is suitable as an energy charging system and has potential in realistic applications.