• Title/Summary/Keyword: Charging Pattern

Search Result 55, Processing Time 0.04 seconds

Study on Charging Pattern of lead-acid Battery for Micro-Source (마이크로 전원에의 적용을 위한 연축전지 충전 패턴에 관한 기초 연구)

  • Kim, Sung-Hyun;Lee, Kye-B.;Son, Kwang-M.
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.494-495
    • /
    • 2008
  • This paper shows the IUIa charging characteristics of charging pattern for industrial lead-acid battery. PSCAD/EMTDC simulation model is developed for studying the IUIa charging characteristics for micro-source, and control the charging current and charging voltage for each section of IUIa charging pattern.

  • PDF

The Research about Analyzing the Charging Pattern using the Electric Vehicle Running Feature Simulation (전기자동차 운행특성 모의를 통한 충전패턴 분석에 관한 연구)

  • Lim, You Seok;Bang, Chang Hyun;Han, Seung Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.205-214
    • /
    • 2013
  • In this paper, we analyzed the various EV charging-infra information(charging status, charging pattern, charging rate, charging fee, etc.) through the charging infra simulator which would be of help to effectively construct the EV charging infrastructure. The proposed simulator virtually made the EV motoring pattern referred to TMS(Traffic Monitoring System) & Ministry of Land, Transport and Maritime Affairs, and analyzed the charging-infra information(amount of charging, accumulated charging fee, etc.) based on vehicle types, charging type, time and days using EV charging-fee list noticed by KEPCO. Through this simulator, we deducted some considerable contents to build the EV charging infrastructure similarly with real environment.

Improvement of charging efficiency of AGM lead acid battery through formation pattern research (Formation pattern 연구를 통한 AGM 연축전지의 충전 효율 향상)

  • Kim, Sung Joon;Son, Jeong Hun;Kim, Bong-Gu;Jung, Yeon Gil
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.1
    • /
    • pp.55-62
    • /
    • 2021
  • In order to improve fuel economy and reduce CO2, HEV adopts ISG system as a standard. This ISG system increased the electric load that the battery had to bear, and the number of starting increased rapidly. AGM Lead Acid batteries have been developed and used, but the charging time is about three times longer as the electrolyte amount control during formation must be maintained at a higher level compared to conventional lead-acid batteries. In this study, we tried to shorten the charging time by increasing the charging efficiency through the optimization of the formation pattern. In order to optimize the Formation Pattern, 10 charging steps and 6 discharging steps were applied to 16 multi steps, and the charging current for each step was controlled, and the test was conducted under 4 conditions (21 hr, 24 hr, 27 hr, 30 hr). As a result of simultaneous application of multi-step and discharge step, it was verified that minimizing the current loss and eliminating the sudden polarization during charging contributes to the improvement of charging efficiency. As a result, it showed excellent results in reducing the charging time by about 30 % with improved charging efficiency compared to the previous one.

FAST CHARGING STRATEGY FOR LITHIUM ION BATTERY

  • Hoang, Thi Quynh Chi;Lee, Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.70-71
    • /
    • 2014
  • In this paper, an advanced charging strategy for improving the charging performance of the Li-ion polymer battery is proposed, which is based on the battery characteristic. Simulation results show that the proposed charging current pattern can improve the charging speed of battery in comparison with the standard CC-CV (constant current - constant voltage) charging strategy and the pulse-charging strategy.

  • PDF

Improvement of Battery Charging Efficiency of ESS for Wind Power Application Using DC-AC Hybrid Charging Pattern (직교류 합성 충전 패턴을 이용한 풍력 연계용 ESS의 배터리 충전 효율 향상)

  • Lee, Jong-Hak;Song, Seung-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.330-335
    • /
    • 2017
  • Increased fossil fuel consumption causes global warming, environmental pollution, and abnormal climate change. Wind-generated power installation is proposed to solve this problem. Recently, the wind power plant construction case encourages the installation of the energy storage system (ESS) to improve the intermittency of wind power. The maximized ESS operation profits connected to wind power are not generated in the simplest operation pattern of charging at night and discharging at day. The battery charging efficiency improvement should be considered to get more profits. Thus, there is a possibility of increasing ESS operation profits by analyzing the battery AC and DC charging/discharging efficiency and the yearly average sealed maintenance free (SMP) in hours. In this paper, the battery impedance characteristic, AC and DC charging/discharging efficiency, and the yearly average SMP are analyzed. The operation scenario to improve the ESS battery charging efficiency connected to wind power is proposed and verified via simulation.

Discharging/Charging Voltage-Temperature Pattern Recognition for Improved SOC/Capacity Estimation and SOH Prediction at Various Temperatures

  • Kim, Jong-Hoon;Lee, Seong-Jun;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • This study investigates an application of the Hamming network-dual extended Kalman filter (DEKF) based on pattern recognition for high accuracy state-of-charge (SOC)/capacity estimation and state-of-health (SOH) prediction at various temperatures. The averaged nine discharging/charging voltage-temperature (DCVT) patterns for ten fresh Li-Ion cells at experimental temperatures are measured as representative patterns, together with cell model parameters. Through statistical analysis, the Hamming network is applied to identify the representative pattern that matches most closely with the pattern of an arbitrary cell measured at any temperature. Based on temperature-checking process, model parameters for a representative DCVT pattern can then be applied to estimate SOC/capacity and to predict SOH of an arbitrary cell using the DEKF. This avoids the need for repeated parameter measuremet.

Cost-effectiveness of Tunnel Blasting Pattern by Applying Large Blasting Holes (대구경의 발파공을 적용한 터널 발파 패턴의 비용 효과)

  • Choi, Won-Gyu
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.7
    • /
    • pp.147-152
    • /
    • 2020
  • The research is carried out to analyze the cost-effectiveness of blasting patterns with regard to the diameters and design of blasting holes. Blasting patterns for single diameter array, and mixed diameter array were comparatively analyzed with regard to drilling and charging time, and materials required. The number of blasting holes required for single array pattern and mixed array pattern were 138 and 93 holes, respectively. From the drilling time analysis, reduction in time and its efficiency of mixed pattern were 139 minutes and 25%, respectively, in comparison with single pattern. Charging time reduction and its efficiency of mixed blasting pattern were evaluated as 22.5 minutes per worker and 33%, respectively, compare to single blasting pattern. The explosive quantities of G1 and G2 required for single array patterns were 270 and 30, while those were 222 and 20 for mixed array patterns for tunnelling 4m. And single pattern required 45 more detonators than the mixed pattern. The evaluation of material required can also be positive parameter for cost reduction of tunnel construction.

Impact of Electric Vehicle Penetration-Based Charging Demand on Load Profile

  • Park, Woo-Jae;Song, Kyung-Bin;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.244-251
    • /
    • 2013
  • This paper presents a study the change of the load profile on the power system by the charging impact of electric vehicles (EVs) in 2020. The impact of charging EVs on the load demand is determined not only by the number of EVs in usage pattern, but also by the number of EVs being charged at once. The charging load is determined on an hourly basis using the number of the EVs based on different scenarios considering battery size, model, the use of vehicles, charging at home or work, and the method of charging, which is either fast or slow. Focusing on the impact of future load profile in Korea with EVs reaching up 10 and 20 percentage, increased power demand by EVs charging is analyzed. Also, this paper analyzes the impact of a time-of-use (TOU) tariff system on the charging of EVs in Korea. The results demonstrate how the penetration of EVs increases the load profile and decreases charging demand by TOU tariff system on the future power system.

A Study of Comparing and Analyzing Electric Vehicle Battery Charging System and Replaceable Battery System by Considering Economic Analysis (경제성을 고려한 전기자동차 충전시스템과 배터리 교체형 시스템의 비교분석 연구)

  • Kim, Si-Yeon;Hwang, Jae-Dong;Lim, Jong-Hun;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1242-1248
    • /
    • 2012
  • Electric vehicle usage is currently very low, but it will be increase with development of electric vehicle technology and a good government policy. Moreover in 2020, advanced electric vehicle manufacturing system will give high performance for its price and mass production. Electric vehicle will become widespread in Korea. From an operational and a planned viewpoint, the electric power demand should be considered in relation to diffusion of electric vehicles. This paper presents the impact of the various battery charge systems. A comparison is performed for electric vehicle charging methods such as, normal charging, fast charging, and battery swapping. In addition, economic evaluation for the replaceable battery system and the quick battery charging system is performed through basic information about charging Infrastructure installation cost. The results of the evaluation show that replaceable battery system is more economical and reliable in side of electric power demand than quick battery charging system.

A Study on the Optimal Generation Conditions of Micro-Droplet in Electrostatic Spray Indirect Charging Method (정전 분무 간접 하전 방식에서 미세액적 최적 발생 조건에 관한 연구)

  • Jihee Lee;Sunghwan Kim;Haiyoung Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.79-87
    • /
    • 2024
  • This paper is a study on the optimal microdroplet generation conditions in indirect charging electrostatic spraying. Unlike the direct charging method, which applies power to the nozzle, the indirect charging method applies power to the discharge electrode between the nozzle and the collection electrode. Therefore, an electrically simplified system can be obtained by minimizing the insulation part a stable spray pattern can be obtained with a wide spray angle, and a stable spray pattern can be obtained with a wide spray angle. To conduct the study, an indirect charging type electrostatic spray visualization system was constructed and the static characteristics of the microdroplets were analyzed through image processing of the spray shape of the microdroplets. The total number of microdroplets and the number of microdroplets per power consumption are confirmed according to the changes in the distance between the discharge electrode and the collection electrode, the flow rate, and the applied voltage, which affect the generation of microdroplets, and using this, the optimal generation conditions are derived and the corresponding microdroplet size distribution was analyzed. As a result of the experiment, it was confirmed that the optimal generation condition was at a flow rate of 15 to 20 mL/min and a voltage of -22.5 to -25 kV in terms of the number of microdroplets, and at a flow rate of 15 to 20 mL/min and a voltage of -20 kV in terms of energy consumption efficiency.