• Title/Summary/Keyword: Charging Particles

Search Result 93, Processing Time 0.021 seconds

The Unipolar Charging Characteristics of Submicron Particles by Using an Indirect Photoelectric Charging (간접 광대전에 의한 서브 마이크론 입자의 단극하전 특성)

  • Choi, Young-Joo;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.6
    • /
    • pp.677-684
    • /
    • 2003
  • A new unipolar aerosol charger was developed by using an indirect photoelectric charging. The charger consists of two coaxial tubes, the inner UV lamp wrapped with stainless mesh and the outer Al cylinder. In this study, the effects of flow rate, particle size, and electric field were examined to search the optimal charging conditions with experimental and numerical methods. Monodisperse NaCl particles were fed into an annular space and the particles were charged by negative ions generated from Al plate exposed to the UV light. According to experimental results, the average number of elementary charge on particles increases from 2.5 to 5.5 as particle size increases from 50nm to 130nm at 2.5 L/min and 100V. The average number of elementary charge on particles was maximized at 25V as the electric potential between the stainless mesh and Al plate was varied from 0V to 400V.

Study on the Fine Particle Charging Characteristics with the Electrohydrodynamic Atomization (전기 수력학적 방법을 이용한 미세 입자의 하전 특성에 관한연구)

  • 안진홍;김광영;윤진욱;안강호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.4
    • /
    • pp.289-294
    • /
    • 2001
  • A well defined electro-spraying and electro-static precipitator(ESP) experiment is carried out to investigate the charging characteristics of the submicron particles and the monodisperse particles. The basic idea is that the highly charged electro-sprayed droplets will be produced into the gas when the Coulombic repulsive force on the surface is higher than the surface tension of the spraying liquid. During this process many highly charged smaller droplets or ions, if the droplets are completely dried out, will be produced in the space. These charged species will be attached ion the particles and then eventually charge the particles. These charged particles will be easily collected with ESP. The experimental results show that the atomizer generated particles with geometric mean diameter (GMD) of 62nm are charged more than 90% even at the mean face velocity of 2.5m/s at the charging zone.

  • PDF

An Experimental Study on the Characteristics of Direct Photoelectric Charging (직접 광대전의 대전특성에 관한 실험적 연구)

  • Lee, Chang-Sun;Kim, Yong-Jin;Kim, Sang-Sao
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.753-759
    • /
    • 2000
  • Photoelectric charging is a very efficient way of charging small particles. This method can be applied to combustion measurement, electrostatic precipitator, metal separation and control of micro-contamination. To understand the photoelectric charging mechanism, particle charging of silver by exposure to ultraviolet is investigated in this study. Average charges and charge distributions are measured at various conditions, using two differential mobility analyzers, a condensation nucleus counter, and an aerosol electrometer. The silver particles are generated in a spark discharge aerosol generator. After that process, the generated particles are charged in the photoelectric charger using low-pressure mercury lamp that emits ultraviolet having wavelength 253.7 nm. The results show that ultra-fine particles are highly charged by the photoelectric charging. The average charges linearly increase with increasing particle size and the charge distribution change with particle size. These results are discussed by comparison with previous experiments and proposed equations. It is assumed that the coefficient of electron emission probability is affected by initial charge. The results also show that the charge distribution of a particle is dependent on initial charge. Single changed particle, uncharged particle and neutralized particle are compared. The differences of charge distribution in each case increase with increasing particle size.

Electrostatic Charging Measurement and PVC Separation of Triboeletrostatically Charged Plastic Particles using a Fluidized Bed Tribocharger

  • Shin, Jin-Hyouk;Lee, Jae-Keun
    • Journal of ILASS-Korea
    • /
    • v.7 no.2
    • /
    • pp.7-15
    • /
    • 2002
  • A particle flow visualization, electrostatic charging measurement and separation of triboelectrically charged particles in the external electric field by a fluidized bed tribocharger are conducted for the removal of PVC particles from mixed waste plastics. The laboratory-scale triboelectrostatic separation system consists of the fluidized bed tribocharger, a separation chamber, a collection chamber and a controller. PVC and PET particles can be imparted negative and positive surface charges respectively due to the difference of triboelectric charging series between particles and particles in the fluidized bed tribocharger, and can be separated by passing them through an external electric field. To visualize these charged particles, He-Ne laser is used with cylindrical lenses to generate a sheet beam. In the charging measurement, the particle motion analysis system (PMAS), capable of determining particle velocity and diameter. is used to non-intrusively measure particle behavior in high strength electric field. The average charge-to-mass ratios of PVC and PET particles are $1.4\;and\;1.2{\mu}C/kg$, respectively. The highly concentrated PVC (91.9%) can be recovered with a yield of about 96.1% from the mixture of PVC and PET materials for a single-stage processing. The triboelectrostatic separation system using the fluidized tribocharger shows the potential to be an effective method for removing PVC from mixed plastics for waste plastic recycling.

  • PDF

Characteristics of Unipolar Charging of the Submicron Particles by the Condensation-Evaporation Method (응축 증발법을 통한 서브마이크론 입자의 단극하전 특성)

  • Choi, Young-Joo;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.186-192
    • /
    • 2006
  • We applied a new charging system using the condensation and evaporation method to charge the submicron particles with a uniform charging performance. The monodispersed NaCl submicron particles were condensed by n-butanol vapor and grew up to micron droplets with a same size, regardless of their initial size. Those condensed droplets were charged in an indirect corona charger. The indirect corona charger consisted of the ion generation zone and the particle charging zone. In the ion generation zone, Ions were generated by corona discharge and some of them moved into the particle charging zone by a carrier gas and mixed with the condensed droplet. And finally, the charged and condensed droplets dried through an evaporator to shrink to their original size. The average charge and penetration rate of the particles before and after evaporation were measured by CPC and aerosol electrometer and compared with those of a conventional corona charger. The results showed that the average charge was $5\~7$ charges and the penetration rate was over $90\%$, regardless of the initial particle size.

Monodisperse Particle Charging Characteristics in a DC-plasma (플라즈마내 입자의 하전특성에 관한 연구)

  • 최석호;김곤호;안강호
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.3
    • /
    • pp.261-266
    • /
    • 1998
  • Since the particles are highly charged in process plasmas, the dynamics of the particles are concerned principally with the effect of the charging amount and polarity. In order to investigate the charging effect of the particles in the plasmas, the known sizes of the mono-dispersed particles with 0.05$\mu\textrm{m}$, 0.07$\mu\textrm{m}$, 0.1$\mu\textrm{m}$and 0.2$\mu\textrm{m}$ diameter are introduced into the DC air-plasmas. The characteristics of the charged particles are measured with a Faraday cup. Results show that the particle charging polarity depends on the concentrations and sizes of the particles and the condition of plasma generation, operating pressure, and power. It is also found that the number of charges per a particle is in the ranges of $10^3$~$ 10^5$.

  • PDF

Effects of Particle Shapes on Unipolar Diffusion Charging of Non-Spherical Particles (비구형 입자의 형상에 따른 단극 확산 하전 특성)

  • Oh, Hyun-Cheol;Park, Hyung-Ho;Kim, Sang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.5
    • /
    • pp.501-509
    • /
    • 2004
  • Unipolar diffusion charging of non-spherical particles was investigated for various particle shapes. We researched with TiO$_2$agglomerates produced by the thermal decomposition of titanium tetraisopropoxide (TTIP) vapor. TTIP was converted into TiO$_2$, in the furnace reactor and was subsequently introduced into the sintering furnace. Increasing the temperature in the sintering furnace, aggregates were restructured into higher fractal dimensions. The aggregates were classified according to their mobility using a differential mobility analyzer. The projection area and the mass fractal dimension of particles were measured with an image processing technique performed by using transmission electron microscope (TEM) photograph. The selected aggregates were charged by the indirect photoelectric-charger and the average number of charges per particle was measured by an aerosol electrometer and a condensation particle counter. For the particles of same mobility diameter, our results showed that the particle charge quantity decreases as the sintering temperature increases. This result is understandable because particles with lower fractal dimension have larger capacitance and geometric surface area.

Energy Storage Characteristics In Fixed Beds (Charging, Storing, Discharging)

  • Hassanein, Soubhi A.;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.17-23
    • /
    • 2004
  • In the present work, the numerical model was refined to predict the thermal analysis of energy storage in a fixed beds during (charging ,storing, discharging) mode. The governing energy equations of both fluid and the solid particles along with their initial and boundary conditions are derived using a two-phase, one dimensional model. The refined model is carried out by taking into account change of (air density , air specific heat) with air temperature and also by taking into considerations heat losses from bed to surrounding. Finite difference method was used to obtain solution of two governing energy equations of both fluid and solid particles through a computer program especially constructed for this purpose. The temperature field for the air and the solid are obtained, also efficiency of energy stored inside the bed is computed. Finally using refined model the effect of air flow rate per unit area Ga (0.2, 0.3, and 0.4 kg/$m^2$-s), and inlet air temperature (200, 250, 300 $^{\circ}C$) on energy storage characteristics was studied in three mode ( charging ,storing, discharging). The rock particles of diameter 1 em is used as bed material in this research.

  • PDF

An Experimental Study on Enhancement of the Filter Efficiency by the Image Effect of Charged Particle (대전된 입자의 영상효과에 의한 필터효율 향상에 관한 실험적 연구)

  • Lee, Chang-Sun;Jeong, Hae-Young;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.760-768
    • /
    • 2000
  • Filter efficiency of electrically charged particle in uncharged fibrous filter was measured. In previous studies, the effect of charged particle on filter efficiency was investigated but there was difficulty in measuring of image effect that is appeared at the charged small particle. We could easily measure the image effect with charging small particles by photoelectric charging. The spark discharge aerosol generator and a differential mobility analyzer (DMA) were used to generate sub-micron monodisperse particles (${\leq}200$ nm). The generated particles were charged in photoelectric charging process using ultraviolet lamp and electric field. The filter efficiency of the charged particles, classified by another DMA, was measured in filter tester using a condensation nucleus counter (CNC) as function of particle diameter, particle charge and airflow velocity. It is shown that the filter efficiency increases with increasing charge number of the particle and is affected by particle size and flow velocity. Single fiber filter efficiency mainly depends on image force parameter and peclet number. The peclet number was not considered at previous other papers. We propose a modi fied experimental correlation as function of image force parameter and peclet number.

Development of Very High Intensity Precharger of Electrostatic Precipitator for Diesel Particulates (디-젤배진용 강력전치하전장치의 개발)

  • Mun, Jae-Deok;Son, Hyeon;Seo, Bo-Hyeok;Kim, Gwang-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1984.07a
    • /
    • pp.226-229
    • /
    • 1984
  • A novel high intensity charging device has been developed for the control of the submicron particles, such as the diesel soot particulates, which are very hard to charge highly by any means of the conventional charging device. Having new corona electrodes of a multineedle disk with the corona field-control electrodes in the outer-cylinder electrode, extremely intense and stable coronas on there sharp points expanding both radially and axially are established in the corona charging region between the multi-corona -needles and an outer-cylinder electrode. As a result, the maximum corona field intensity and current density of the charging device of the standard one on soot load in laboratory tests have been 8.5KV/cm(E=$2V_m$/D(1nD/d)) and $6.5{\mu}A/cm^2$ which enhance greatly the charging of soot particles about several 100 times higher than those obtained in conventional cylinder precipitators.

  • PDF