• Title/Summary/Keyword: Charge neutrality level

Search Result 3, Processing Time 0.018 seconds

Single Crystalline CoFe/MgO Tunnel Contact on Nondegenerate Ge with a Proper Resistance-Area Product for Efficient Spin Injection and Detection

  • Jeon, Kun-Rok;Min, Byoung-Chul;Lee, Hun-Sung;Shin, Il-Jae;Park, Chang-Yup;Shin, Sung-Chul
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2010.06a
    • /
    • pp.96-96
    • /
    • 2010
  • We report the proper resistance-area products in the single crystalline bcc CoFe/MgO tunnel contact on nondegenerate n-Ge desirable for efficient spin injection and detection at room temperature. The electric properties of the crystalline CoFe(5 nm)/MgO(1.5,2.0,2.5 nm)/n-Ge(001) tunnel contacts have been investigated by I-V-T and C-V measurements. Interestingly, the tunnel contact with the 2-nm MgO exhibits the ohmic behavior with low resistance-area products, satisfying the theoretical conditions required for significant spin injection and detection. This result is ascribed to the presence of MgO layer between CoFe and n-Ge, enhancing the Schottky pinning parameter as well as shifting the charge neutrality level.

  • PDF

A Study on the analytical derivation of the L-I-V characteristics for a SCH QW Laser Diode (SCH 양자우물 레이저 다이오드에 대한 L-I-V 특성의 해석적도출에 관한 연구)

  • Park, Ryung-Sik;Bang, Seong-Man;Sim, Jae-Hun;Seo, Jeong-Ha
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.3
    • /
    • pp.9-19
    • /
    • 2002
  • By using the thermionic emission model, the L-I-V(power-current-voltage) characteristics of a SCH(seperate confinement heterostructure) QW(quantum well) laser diode is analytically derived. We derived the relationships between the bulk carrier density of SCH regions and the confined carrier density of QW. The L-I-V characteristics is derived analytically by using current continuity equations. Solving the ambipolar diffusion equation under the condition of high level injection and charge neutrality, the current distribution in the SCH regions is considered. Results showed that the major factor affecting the laser I-V characteristics was the change of potential barrier at the cladding-SCH interface. Also the series resistance of a laser diode was decreased and the carrier injection was increased by increasing the forward flux of injection current from cladding to SCH region.

Enhanced pH Response of Solution-gated Graphene FET by Using Vertically Grown ZnO Nanorods on Graphene Channel

  • Kim, B.Y;Jang, M.;Shin, K.-S.;Sohn, I.Y;Kim, S.-W.;Lee, N.-E
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.434.2-434.2
    • /
    • 2014
  • We observe enhanced pH response of solution-gated field-effect transistors (SG-FET) having 1D-2D hybrid channel of vertical grown ZnO nanorods grown on CVD graphene (Gr). In recent years, SG-FET based on Gr has received a lot of attention for biochemical sensing applications, because Gr has outstanding properties such as high sensitivity, low detection limit, label-free electrical detection, and so on. However, low-defect CVD Gr has hardly pH responsive due to lack of hydroxyl group on Gr surface. On the other hand, ZnO, consists of stable wurtzite structure, has attracted much interest due to its unique properties and wide range of applications in optoelectronics, biosensors, medical sciences, etc. Especially, ZnO were easily grown as vertical nanorods by hydrothermal method and ZnO nanostructures have higher sensitivity to environments than planar structures due to plentiful hydroxyl group on their surface. We prepared for ZnO nanorods vertically grown on CVD Gr (ZnO nanorods/Gr hybrid channel) and to fabricate SG-FET subsequently. We have analyzed hybrid channel FETs showing transfer characteristics similar to that of pristine Gr FETs and charge neutrality point (CNP) shifts along proton concentration in solution, which can determine pH level of solution. Hybrid channel SG-FET sensors led to increase in pH sensitivity up to 500%, compared to pristine Gr SG-FET sensors. We confirmed plentiful hydroxyl groups on ZnO nanorod surface interact with protons in solution, which causes shifts of CNP. The morphology and electrical characteristics of hybrid channel SG-FET were characterized by FE-SEM and semiconductor parameter analyzer, respectively. Sensitivity and sensing mechanism of ZnO nanorods/Gr hybrid channel FET will be discussed in detail.

  • PDF