• 제목/요약/키워드: Charge equalization system

검색결과 11건 처리시간 0.033초

Low-Voltage-Stress AC-Linked Charge Equalizing System for Series-Connected VRLA Battery Strings

  • Karnjanapiboon, Charnyut;Jirasereeamornkul, Kamon;Monyakul, Veerapol
    • Journal of Power Electronics
    • /
    • 제13권2호
    • /
    • pp.186-196
    • /
    • 2013
  • This paper presents a low voltage-stress AC-linked charge equalizing system for balancing the energy in a serially connected, valve-regulated lead acid battery string using a modular converter that consists of multiple transformers coupled together. Each converter was coupled through an AC-linked bus to increase the overall energy transfer efficiency of the system and to eliminate the problem of the unbalanced charging of batteries. Previous solutions are based on centralized and modularized topologies. A centralized topology requires a redesign of the hardware and related components. It also faces a high voltage stress when the number of batteries is expanded. Modularized solutions use low-voltage-stress, double-stage, DC-linked topologies which leads to poor energy transfer efficiency. The proposed solution uses a low-voltage stress, AC-linked, modularized topology that makes adding more batteries easier. It also has a better energy transfer efficiency. To ensure that the charge equalization system operates smoothly and safely charges batteries, a small intelligent microcontroller was used in the control section. The efficiency of this charge equalization system is 85%, which is 21% better than other low-voltage-stress DC-linked charging techniques. The validity of this approach was confirmed by experimental results.

Battery Equalization Method for Parallel-connected Cells Using Dynamic Resistance Technique

  • La, Phuong-Ha;Choi, Sung-Jin
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 추계학술대회
    • /
    • pp.36-38
    • /
    • 2018
  • As the battery capacity requirement increases, battery cells are connected in a parallel configuration. However, the sharing current of each battery cell becomes unequal due to the imbalance between cell's impedance which results the mismatched states of charge (SOC). The conventional fixed-resistance balancing methods have a limitation in battery equalization performance and system efficiency. This paper proposes a battery equalization method based on dynamic resistance technique, which can improve equalization performance and reduce the loss dissipation. Based on the SOC rate of parallel connected battery cells, the switches in the equalization circuit are controlled to change the equivalent series impedance of the parallel branch, which regulates the current flow to maximize SOC utilization. To verify the method, operations of 4 parallel-connected 18650 Li-ion battery cells with 3.7V-2.6Ah individually are simulated on Matlab/Simulink. The results show that the SOCs are balanced within 1% difference with less power dissipation over the conventional method.

  • PDF

Cell Balancing Scheme with Series Coupling of Multiple Primary Windings for Hybrid Electric Vehicle Lithium-Ion Battery Cells

  • Park, Hong-Sun;Kim, Chong-Eun;Moon, Gun-Woo;Lee, Joong-Hui
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2007년도 하계학술대회 논문집
    • /
    • pp.347-349
    • /
    • 2007
  • Charge equalization scheme for HEV lithium-ion battery system is proposed in this paper, where all the primary windings with in parallel bi-directional switches are coupled in series to provide the equalizing energy from the whole battery string to the specific under charged cells. Moreover, to realize minimized size of equalization circuit employing the proposed cell balancing scheme, the optimal power rating design rule according to equalization time and SOC distribution of imbalance is proposed. A prototype of HEV lithium-ion battery system of four cells shows the outstanding charge equalization performance while maintaining greatly reduced size of cell balancing circuit.

  • PDF

전기자동차 배터리 모듈용 직접 셀 전하 균등화 회로 (A Direct Cell-to-Cell Charge Balancing Circuit for the EV Battery Module)

  • 팜반롱;응웬킴헝;간 압둘바싯;최우진
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2015년도 전력전자학술대회 논문집
    • /
    • pp.401-402
    • /
    • 2015
  • In this paper a direct cell-to-cell charge balancing circuit which can transfer the charge from any cell to any cell in the battery string is introduced. In the proposed topology the energy in the high voltage cell is transferred to the low voltage cell through the simple operation of a dc-dc converter to get fast equalization. Furthermore, the charge equalization can be performed regardless of the battery module operation whether it is being charged, discharged or relaxed. The monitoring circuit composed of a DSP and a battery monitoring IC is designed to monitor the cell voltage and protect the battery. In order to demonstrate the advantages of the proposed topology, a prototype circuit was designed and applied to 12 Lithium-Ion battery module. It has been verified with the experiments that the charge equalization time of the proposed method was shortest compared with those of other methods.

  • PDF

A CHARGER/DISCHARGER FOR MODELING OF SERIAL/PARALLEL CONNECTED NI-MH BATTERY

  • Heo, Min-Ho;Ahn, Jae-Young;Kim, Kwang-Heon
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.554-559
    • /
    • 1998
  • Equalizing the state of charge of cell that affects the charge/discharge quality and efficiency of the battery through the charge/discharge characteristic experiments of battery source, we develope the high efficiency charge/discharge system which would be used in serial HEV with the constant engine-generator output. For this, establishes the electrical model of Ni-MH battery appropriate to the high efficiency charge/discharge conditions. There is no model of Ni-MH cell, so we used Ni-Cd model and obtain the Ni-MH model through the experiment. A reason that each cell has the same charge/discharge property for applying the cell model to serial/parallel connected battery source extensively is needed. Therefore, in this paper, propose the Ni-MH charger/discharger has the equalization charging function and selectable cut-off function.

  • PDF

리튬이온 배터리 모듈을 위한 단일셀간 고속 밸런싱 회로 (A Cell-to-Cell Fast Balancing Circuit for Lithium-Ion Battery Module)

  • 팜반롱;간 압둘바싯;응웬탄둥;최우진
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2015년도 추계학술대회 논문집
    • /
    • pp.7-8
    • /
    • 2015
  • In this paper a cell-to-cell fast charge balancing circuit for the Lithium-Ion battery module is proposed. In the proposed topology the energy in a high voltage cell is transferred directly to a low voltage cell through the operation of the dc-dc converter. Furthermore, the charge balancing can be performed regardless of the battery operation whether it is being charged, discharged or relaxed. The monitoring circuit composed of a DSP and a battery monitoring IC is designed to monitor the cell voltage and detect the inferior cell thereby protecting the battery module from failure. In order to demonstrate the performance of the proposed topology, a prototype circuit was designed and applied to 12 Lithium-Ion battery module. It has been verified with the experiments that the charge equalization time of the proposed method was shorter compared with those of other methods.

  • PDF

전기자동차용 배터리 관리 시스템에 관한 연구 (A Study on developing the Battery Management System for Electric Vehicle)

  • 한아군;박재현;추연규
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2013년도 추계학술대회
    • /
    • pp.882-883
    • /
    • 2013
  • With the development of the society, pure electric vehicles will be surely important of the future. Electric vehicle requires various technology like motor driving, battery management, operational efficiencies and so on. Battery management is indeed the most important to enhance battery's performance and life. This paper has deeply discussed and studied on the lithium-polymer battery management system of pure electric vehicle. First of all we have analyzed the characteristic of the lithium-polymer batteries and the factors influenced on the state of charge. Then a logical SOC measuring method has been raised, which is the combination of open circuit voltage and Ah integration. The next we will introduce the design of battery management system, the battery management system performs many functions, such as inspecting the whole process, when it's running cell equalization protecting and diagnosing the battery, estimating the state of charge. The module design style including microcontroller, data aquisition module, charging control module and serial communication module. To arrive at conclusions, the battery management system which this paper has introduced is reliable and economical.

  • PDF

State-of-Charge Balancing Control of a Battery Power Module for a Modularized Battery for Electric Vehicle

  • Choi, Seong-Chon;Jeon, Jin-Yong;Yeo, Tae-Jung;Kim, Young-Jae;Kim, Do-Yun;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권3호
    • /
    • pp.629-638
    • /
    • 2016
  • This paper proposes a State-of-Charge (SOC) balancing control of Battery Power Modules (BPMs) for a modularized battery for Electric Vehicles (EVs) without additional balancing circuits. The BPMs are substituted with the single converter in EVs located between the battery and the inverter. The BPM is composed of a two-phase interleaved boost converter with battery modules. The discharge current of each battery module can be controlled individually by using the BPM to achieve a balanced state as well as increased utilization of the battery capacity. Also, an SOC balancing method is proposed to reduce the equalization time, which satisfies the regulation of a constant DC-link voltage and a demand of the output power. The proposed system and the SOC balancing method are verified through simulation and experiment.

Power Distribution Control Scheme for a Three-phase Interleaved DC/DC Converter in the Charging and Discharging Processes of a Battery Energy Storage System

  • Xie, Bing;Wang, Jianze;Jin, Yu;Ji, Yanchao;Ma, Chong
    • Journal of Power Electronics
    • /
    • 제18권4호
    • /
    • pp.1211-1222
    • /
    • 2018
  • This study presents a power distribution control scheme for a three-phase interleaved parallel DC/DC converter in a battery energy storage system. To extend battery life and increase the power equalization rate, a control method based on the nth order of the state of charge (SoC) is proposed for the charging and discharging processes. In the discharging process, the battery sets with high SoC deliver more power, whereas those with low SoC deliver less power. Therefore, the SoC between each battery set gradually decreases. However, in the two-stage charging process, the battery sets with high SoC absorb less power, and thus, a power correction algorithm is proposed to prevent the power of each particular battery set from exceeding its rated power. In the simulation performed with MATLAB/Simulink, results show that the proposed scheme can rapidly and effectively control the power distribution of the battery sets in the charging and discharging processes.

다권선 변압기의 자화 에너지를 이용한 모듈화 전하 균일 장치 (A Modularized Charge Equalizer Using the Magnetizing Energy of the Multi-Winding Transformer)

  • 임창순;현동석;김래영
    • 전력전자학회논문지
    • /
    • 제17권5호
    • /
    • pp.393-400
    • /
    • 2012
  • The modularized equalizers normally use additional components among the modules in the long series-connected lithium-ion battery string. In these approaches, the overall systems are heavy, bulky, and high-priced. Furthermore, the losses related to additional components decrease the system efficiency. To avoid these problems, a modularized equalizer, which has no additional components among the modules, is required. This paper proposes a novel control scheme using the magnetizing energy of the multi-winding transformer for the module equalization. In this scheme, the high duty cycle is applied to the module where the voltage is higher than the reference voltage and the low duty cycle is applied to the module where the voltage is lower than the reference voltage. Due to the different duty cycle, more electric charges are transferred from high voltage module to the low voltage module during the turn-off switching interval. Using the proposed control scheme, the equalizer system does not suffer from the size, cost, and loss related to the modularization. The experimental results are provided to verify the effectiveness of the proposed modularized equalizer.