• Title/Summary/Keyword: Charge balancing

Search Result 90, Processing Time 0.038 seconds

A Modified Charge Balancing Scheme for Cascaded H-Bridge Multilevel Inverter

  • Raj, Nithin;G, Jagadanand;George, Saly
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2067-2075
    • /
    • 2016
  • Cascaded H-bridge multilevel inverters are currently used because it enables the integration of various sources, such as batteries, ultracapacitors, photovoltaic array and fuel cells in a single system. Conventional modulation schemes for multilevel inverters have concentrated mainly on the generation of a low harmonic output voltage, which results in less effective utilization of connected sources. Less effective utilization leads to a difference in the charging/discharging of sources, causing unsteady voltages over a long period of operation and a reduction in the lifetime of the sources. Hence, a charge balance control scheme has to be incorporated along with the modulation scheme to overcome these issues. In this paper, a new approach for charge balancing in symmetric cascaded H-bridge multilevel inverter that enables almost 100% charge balancing of sources is presented. The proposed method achieves charge balancing without any additional stages or complex circuit or considerable computational requirement. The validity of the proposed method is verified through simulation and experiments.

A Novel Cell Balancing Circuit for Fast Charge Equalization (빠른 전하 균일화를 위한 새로운 구조의 셀 밸런싱 회로)

  • Park, Dong-Jin;Choi, See-Young;Kim, Yong-Wook;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.2
    • /
    • pp.160-166
    • /
    • 2015
  • This study proposes an improved cell balancing circuit for fast equalization among lithium-ion (Li-ion) batteries. A simple voltage sensorless charge balancing circuit has been proposed in the past. This cell balancing circuit automatically transfers energy from high-to low-voltage battery cells. However, the circuit requires a switch with low on-resistance because the balancing speed is limited by the on-resistance of the switch. Balancing speed decreases as the voltage difference among the battery cells decrease. In this study, the balancing speed of the cell balancing circuit is enhanced by using the auxiliary circuit, which boosts the balancing current. The charging current is determined by the nominal battery cell voltage and thus, the balancing speed is almost constant despite the very small voltage differences among the batteries. Simulation results are provided to verify the validity of the proposed cell balancing circuit.

Series-connected Power Conversion System Integrating a Photovoltaic Power Conditioner with a Charge-balancing Circuit (태양광 전력조절기와 배터리 전하 밸런스 회로를 통합시킨 직렬형 전력변환 시스템)

  • Lee, Hyun-Jun;Shin, Jong-Hyun;Park, Joung-Hu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.5
    • /
    • pp.389-394
    • /
    • 2015
  • This paper proposes a series-connected power conversion system that integrates a photovoltaic power conditioner and a charge-balancing circuit. In conventional methods, a photovoltaic power conditioner and a cell-balancing circuit are needed for photovoltaic systems with energy storage devices, which results in a complex configuration and high cost. To overcome these problems, a series-connected DC-DC power conditioning system that integrates a photovoltaic power conditioner with a charge-balancing circuit is proposed. During the generation, the system operates as power conditioner only, whereas it operates as a cell balancing circuit during the rest time. For the analysis, the operating principle of the circuit and the controller design are done by PSIM simulation. For verification, a hardware prototype with 48-W photovoltaic modules has been implemented. Results verified that the modularized photovoltaic power conversion system with a series-connected storage successfully works with the proposed method.

Modularized Charge Equalization Converter for Hybrid Electric Vehicle Lithium-Ion Battery Stack

  • Park, Hong-Sun;Kim, Chong-Eun;Kim, Chol-Ho;Moon, Gun-Woo;Lee, Joong-Hui
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.350-352
    • /
    • 2007
  • Modularized charge equalization converter for HEV lithium-ion battery cells is proposed in this paper, in which intra-module and inter-module charge equalization can be achieved at the same time. For intra-module charge equalization, the conventional flyback DC/DC converters of low power and small size are employed, in which all of the primary sides are coupled in parallel for selective charge of the specific under charged cell within the module. For inter-module charge equalization, the flyback DC/DC converters are also added, in which all the secondary windings are electrically linked in parallel for automatic charge balancing among the modules. An engineering sample of forty cells hiring the proposed cell balancing scheme is implemented and its experimental result shows that the proposed modularized charge equalization circuit has good cell balancing performance.

  • PDF

A Cell-to-Cell Fast Balancing Circuit for Lithium-Ion Battery Module (리튬이온 배터리 모듈을 위한 단일셀간 고속 밸런싱 회로)

  • Pham, Van-Long;Basit, Khan Abdul;Nguyen, Thanh-Tung;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.7-8
    • /
    • 2015
  • In this paper a cell-to-cell fast charge balancing circuit for the Lithium-Ion battery module is proposed. In the proposed topology the energy in a high voltage cell is transferred directly to a low voltage cell through the operation of the dc-dc converter. Furthermore, the charge balancing can be performed regardless of the battery operation whether it is being charged, discharged or relaxed. The monitoring circuit composed of a DSP and a battery monitoring IC is designed to monitor the cell voltage and detect the inferior cell thereby protecting the battery module from failure. In order to demonstrate the performance of the proposed topology, a prototype circuit was designed and applied to 12 Lithium-Ion battery module. It has been verified with the experiments that the charge equalization time of the proposed method was shorter compared with those of other methods.

  • PDF

Buck-Flyback (fly-buck) Stand-Alone Photovoltaic System for Charge Balancing with Differential Power Processor Circuit

  • Lee, Chun-Gu;Park, Jung-Hyun;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.1011-1019
    • /
    • 2019
  • In this paper, a buck-flyback (fly-buck) stand-alone photovoltaic (PV) system for charge balancing with a differential power processor (DPP) circuit is proposed. Conventional feed-back DPP converters draw differential feed-back power from the output of a string converter. Therefore, the power is always through the switches and diodes of the string converter. Because of the returning conduction path, there are always power losses due to the resistance of the switch and the forward voltage of the diode. Meanwhile, the proposed feed-back DPP converter draws power from the magnetically-coupled inductor in a string converter. This shortens the power path of the DPP converter, which reduces the power losses. In addition, the extra winding in the magnetically-coupled inductor works as a charge balancer for battery-stacked stand-alone PV systems. The proposed system, which uses a single magnetically-coupled inductor, can control each of the PV modules independently to track the maximum power point. Thus, it can overcome the power loss due to the power path. It can also achieve charge balancing for each of the battery modules. The proposed topology is analyzed and verified using 120W hardware experiments.

State-of-Charge Balancing Control of a Battery Power Module for a Modularized Battery for Electric Vehicle

  • Choi, Seong-Chon;Jeon, Jin-Yong;Yeo, Tae-Jung;Kim, Young-Jae;Kim, Do-Yun;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.629-638
    • /
    • 2016
  • This paper proposes a State-of-Charge (SOC) balancing control of Battery Power Modules (BPMs) for a modularized battery for Electric Vehicles (EVs) without additional balancing circuits. The BPMs are substituted with the single converter in EVs located between the battery and the inverter. The BPM is composed of a two-phase interleaved boost converter with battery modules. The discharge current of each battery module can be controlled individually by using the BPM to achieve a balanced state as well as increased utilization of the battery capacity. Also, an SOC balancing method is proposed to reduce the equalization time, which satisfies the regulation of a constant DC-link voltage and a demand of the output power. The proposed system and the SOC balancing method are verified through simulation and experiment.

A Direct Cell-to-Cell Charge Balancing Circuit for the EV Battery Module (전기자동차 배터리 모듈용 직접 셀 전하 균등화 회로)

  • Pham, Van-Long;Nguyen, Kim-Hung;Basit, Khan Abdul;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.401-402
    • /
    • 2015
  • In this paper a direct cell-to-cell charge balancing circuit which can transfer the charge from any cell to any cell in the battery string is introduced. In the proposed topology the energy in the high voltage cell is transferred to the low voltage cell through the simple operation of a dc-dc converter to get fast equalization. Furthermore, the charge equalization can be performed regardless of the battery module operation whether it is being charged, discharged or relaxed. The monitoring circuit composed of a DSP and a battery monitoring IC is designed to monitor the cell voltage and protect the battery. In order to demonstrate the advantages of the proposed topology, a prototype circuit was designed and applied to 12 Lithium-Ion battery module. It has been verified with the experiments that the charge equalization time of the proposed method was shortest compared with those of other methods.

  • PDF

Nonisolated Multichannel LED Current Balancing Scheme Using Coupled Inductor and Series Resonant Converter (결합인덕터와 직렬 공진을 이용한 비절연 다중 LED 전류 평형 기법)

  • Shin, Yooyong;Hong, Daheon;Choi, Byungcho;Cha, Honnyong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.4
    • /
    • pp.249-255
    • /
    • 2021
  • A novel current balancing technique for multichannel light-emitting diode (LED) that uses a series resonance and coupled inductor is proposed in this paper. The proposed LED driver balances output currents through frequency control and enables zero-voltage switching. The proposed converter utilizes the charge balance condition of the resonant capacitor and the current sharing function of the coupled inductor to achieve whole LED current balancing without an additional controller. The proposed coupled inductor can integrate the current balancing function and the resonant inductor, so the power density can be increased by reducing the number of magnetic devices. A 40 W prototype is built to verify the validity of this LED driver, and the experimental results are successfully obtained.

New LED Current Balancing Scheme Using C-Fed Z-Source Converter (전류형 Z-Source 컨버터를 이용한 새로운 LED 전류 밸런싱 기법)

  • Hong, Daheon;Cha, Honnyong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.1
    • /
    • pp.9-15
    • /
    • 2021
  • In multi-string light-emitting diode (LED) driver system, current balancing is crucial because the brightness of LED is directly related to its forward current. This paper presents a novel LED current balancing topology using current-fed Z-source converter. With the proposed structure, currents flowing through two LED strings are automatically balanced owing to the charge-balance condition on capacitors. Operation of the proposed converter is simple and the proposed converter uses only one active switch and one diode. Moreover, low-side gate driving can be used to operate the active switch. To verify the operation of the proposed LED current balancing converter, a prototype is built and tested with different numbers of LEDs.