• 제목/요약/키워드: Charge back pressure

검색결과 13건 처리시간 0.02초

Multi-Nozzle Injection Molding Automatic Machine 개발에 관한 연구 (A Study on the Development of an Automatic Multi-Nozzle Injection Molding Machine)

  • 이종형;김정환;이창헌;김윤곤;임춘규;이춘곤;권영신
    • 한국산업융합학회 논문집
    • /
    • 제10권2호
    • /
    • pp.123-128
    • /
    • 2007
  • The demand for the precision rubber products has been rapidly increasing with the recent growth of industries. And the requirement for the productivity and the quality calls out for the injection molding machines with the precision machining ability as well as the high productivity. Especially modern automobile industry is in urgent need of developing injection molding machines for the high quality rubber products with high productivity. And the inability of the domestic companies to meet the standards causes importing foreign machines and as a result spending good amount of dollars. It is extremely important to develop competitive machines and strengthen the infrastructure of the related industries. In this paper the functions and the structure of a automatic multi-nozzle injection molding machine has been studied to set up a proper test system for the precision rate and the reliability of the machines, which can help build the machines to meet the request of the industry.

  • PDF

Fundamentals of Particle Fouling in Membrane Processes

  • Bhattacharjee Subir;Hong Seungkwan
    • Korean Membrane Journal
    • /
    • 제7권1호
    • /
    • pp.1-18
    • /
    • 2005
  • The permeate flux decline due to membrane fouling can be addressed using a variety of theoretical stand-points. Judicious selection of an appropriate theory is a key toward successful prediction of the permeate flux. The essential criterion f3r such a decision appears to be a detailed characterization of the feed solution and membrane properties. Modem theories are capable of accurately predicting several properties of colloidal systems that are important in membrane separation processes from fundamental information pertaining to the particle size, charge, and solution ionic strength. Based on such information, it is relatively straight-forward to determine the properties of the concentrated colloidal dispersion in a polarized layer or the cake layer properties. Incorporation of such information in the framework of the standard theories of membrane filtration, namely, the convective diffusion equation coupled with an appropriate permeate transport model, can lead to reasonably accurate prediction of the permeate flux due to colloidal fouling. The schematic of the essential approach has been delineated in Figure 5. The modern approaches based on appropriate cell models appear to predict the permeate flux behavior in crossflow membrane filtration processes quite accurately without invoking novel theoretical descriptions of particle back transport mechanisms or depending on adjust-able parameters. Such agreements have been observed for a wide range of particle size ranging from small proteins like BSA (diameter ${\~}$6 nm) to latex suspensions (diameter ${\~}1\;{\mu}m$). There we, however, several areas that need further exploration. Some of these include: 1) A clear mechanistic description of the cake formation mechanisms that clearly identifies the disorder to order transition point in different colloidal systems. 2) Determining the structure of a cake layer based on the interparticle and hydrodynamic interactions instead of assuming a fixed geometrical structure on the basis of cell models. 3) Performing well controlled experiments where the cake deposition mechanism can be observed for small colloidal particles (< $1\;{\mu}m$). 4) A clear mechanistic description of the critical operating conditions (for instance, critical pressure) which can minimize the propensity of colloidal membrane fluting. 5) Developing theoretical approaches to account for polydisperse systems that can render the models capable of handing realistic feed solutions typically encountered in diverse applications of membrane filtration.

전류밀도와 전기삼투 현상이 전기투석 공정의 탈염성능에 미치는 영향 (Effect of Current Density and Electroosmotic Phenomena on the Desalination Performance of the Electrodialysis Process)

  • 천은서;최재환
    • 공업화학
    • /
    • 제34권3호
    • /
    • pp.272-278
    • /
    • 2023
  • 이 연구에서는 전류밀도와 전기삼투 현상이 전기투석(electrodialysis, ED)의 탈염성능에 미치는 영향을 분석하였다. 농축액의 농도를 10~200 g/L로 변화시키면서 정전압 조건에서 ED 실험을 진행하였다. ED 운전과정에서 스택에 공급되는 전류밀도와 전하량, 희석액과 농축액의 농도, 그리고 전기삼투에 의한 물 이동량을 측정하여 탈염성능을 분석하였다. 농축액의 농도가 증가함에 따라 이온교환막의 선택성이 감소하여 전류효율이 감소하였다. 또한 전류효율은 스택에 공급되는 전류밀도에 영향을 받는 것으로 나타났다. 전류밀도가 15 mA/cm2 이상에서는 역 확산이 억제되어 전류효율이 증가하였다. ED 운전과정에서 전기삼투에 의한 물 이동량을 분석하였다. 물 이동량은 농축액과 희석액의 농도비에 비례하여 증가하는 것을 알 수 있었다. 농도비가 100 이상에서는 삼투압에 의한 물 이동량이 급격히 증가하여 200 g/L 이상의 농축액을 얻는데 한계가 있는 것으로 나타났다.