• Title/Summary/Keyword: Charge air pressure

Search Result 103, Processing Time 0.042 seconds

Flame and Combustion Characteristics of D.I. HCCI Diesel Engine using a Visualization Engine (가시화 엔진을 이용한 직분식 예혼합 압축착화 디젤엔진의 화염 및 연소특성)

  • 권오영;류재덕;이기형;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.100-107
    • /
    • 2002
  • Combustion characteristics of diesel engine depends on mixture formation process during Ignition delay and premixed flame region. Fuel and air mixture formation has a great influence on the exhaust emission. Therefore, the present study focused on the combustion mechanism of Homogeneous Charge Compression Ignition (HCCI) engine. This study was carried out to investigate the combustion characteristics of direct injection type HCCI engine using a visualization engine. To investigate the combustion characteristics, we measured cylinder pressure and calculated heat release rate. In addition, we investigated the flame development process by using visualization engine system. From the experimental result of HCCI engine, we observed that cool flame was always appeared in HCCI combustion and magnitude of cool flame was proportional to magnitude of hot flame. And we also found that fuel injection timing is more effective to increase lean homogeneous combustion performance than intake air temperature. Since increasing the intake air temperature improved fuel vaporization before the fuel atomizes, we concluded that increasing the temperature has disadvantage fur homogeneous premixed combustion.

Blast Analysis of Concrete Structure using Arbitrary Lagrangian-Eulerian Technique (Arbitrary Lagrangian-Eulerian기법을 적용한 콘크리트 구조물의 폭발해석)

  • Yi, Na-Hyun;Kim, Sung-Bae;Nam, Jin-Won;Lee, Sung-Tae;Kim, Jang-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.269-272
    • /
    • 2008
  • Blast load, an impulsive load with extremely short time duration with very high pressure, is effected by ground and air condition, weight of charge, shape and location of structure. In this study, a blast dynamic analysis for the air-structural integrated model considering dynamic properties of materials and simulation of complex blast wave propagation by Arbitrary Lagrangian- Eulerian technique is suggested to perform an accurate blast analysis of concrete structures. For the verification of the proposed blast analysis method, which is the air-structure integrated model using ALE technique, the comparison of analysis and experimental results is performed. The verification confirms that the simulation of realistic behavior of RC wall structures is possible using ALE method. Also, the example cases which have been analyzed using this method show that the estimation to the structural failure criterion for blast load failure can be represented by energy absorbtion procedure.

  • PDF

The Study on the Performance Characteristics due to the Degree of Superheat in $NH_3$ Refrigeration System (III) -The Comparison of Heat Exchanger Types- ($NH_3$ 냉동장치의 과열도에 관한 성능 특성 연구(III) -열교환기 타입별 비교-)

  • Lee Jong-In;Kim Yang-Hyun;Park Chan-Soo;Ha Ok-Nam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1132-1138
    • /
    • 2005
  • Recently, production and use of freon substances are restrained due to depletion of ozone layer and global warming. In this aspect of environmental problems, the best solution is to use the natural refrigerant such as ammonia. Thus, this study is to find the optimal operating conditions by comparing the performance between the shell and tube type and shell and disk type heat exchangers using the ammonia refrigerant, and to verify the superiority of the shell and disk type heat exchanger that is not used in field of refrigeration and air conditioning. Finally, this study shows that the shell and disk type heat exchanger is applicable to the ammonia refrigeration system, and this system minimizes the refrigerant charge and installation space.

A Study on Effect of the Intake Valve Timing and Injection Conditions on the PCCI Engine Performance (흡기밸브 닫힘 시기와 분사조건이 PCCI 엔진의 성능에 미치는 영향에 관한 연구)

  • Lee, Jae-Hyeon;Kim, Hyung-Min;Kim, Yung-Jin;Lee, Ki-Hyung
    • Journal of ILASS-Korea
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • As world attention has focused on global warming and air pollution, high efficiency diesel engines with low $CO_2$ emissions have become more attractive. Premixed diesel engines in particular have the potential to achieve the more homogeneous mixture in the cylinder which results in lower NOx and soot emission. Early studies have shown that the operation conditions such as the EGR, intake conditions, injection conditions and compression ratio are important to reduce emissions in a PCCI (Premixed Charge Compression Ignition) engine. In this study a modified cam was employed to reduce the effective compression ratio. While opening timing of the intake valve was fixed, closing timing of the intake valve was retarded $30^{\circ}$. Although Atkinson cycle with the retarded cam leads to a low in-cylinder pressure in the compression stroke, the engine work can still be increased by advanced injection timing. On that account, we investigated the effects of various injection parameters to reduce emission and fuel consumption; as a result, lower NOx emission levels and almost same levels of fuel consumption and PM compared with those of conventional diesel engine cam timing could be achieved with the LIVC system.

HCCI Combustion of DME in a Rapid Compression and Expansion Machine (급속압축팽창기를 이용한 DME의 HCCI 연소)

  • Sung, Yong-Ha;Jung, Kil-Sung;Choi, Byung-Chul;Lim, Myung-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.8-14
    • /
    • 2007
  • Compression ignition of homogeneous charges in IC engines indicates possibilities of achieving the high efficiency of DI diesel engines with low level of NOx and particulate emissions. The objectives of this study are to further understand the characteristics of the HCCI(Homogeneous charge compression ignition) combustion and to find ways of extending the rich HCCI operation limit in an engine-like environment. DME fuel is supplied either in the form of premixture with air or directly injected in the combustion chamber of a rapid compression and expansion machine under the conditions of various equivalence ratio and injection timing. The cylinder pressure is measured and the rate of heat release is computed from the measured pressure for the analysis of the combustion characteristics. The experimental data show that the RCEM can operate without knock on mixtures of higher equivalence ratio, when DME is directly injected in the combustion chamber than introduced as a fraction of a perfect or nearly perfect premixture. Very early fuel injection timings usually employed in HCCI operation are seen to have only insignificant effects in control of ignition timing.

A Study on the Positively Charged Filter for Removing Fine Particles in Water (양전하가 부가된 수처리 필터의 입자제거특성에 관한 연구)

  • Jung, Sung-Hak;Kim, Jong-Won;Kim, Sang-Hee;Jeon, Byung-Heon;Lee, Seung-Gap;Lee, Jae-Keun;Ahn, Young-Chull
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.5
    • /
    • pp.454-460
    • /
    • 2012
  • The purpose of the present work is to investigate the removal characteristics of positively charged filters for capturing negatively charged particles such as bacteria and virus in water. In order to reduce the pressure drop and increase the filtration efficiency, the filter media, modified by charge modifier having positive functional groups, is developed and evaluated. Improved liquid filters have been developed with the modified surface charge to capture and adsorb particles by electrokinetic interaction between the filter surface and particles contained in an aqueous liquid. The positively charged filter media is composed of glass fiber, cellulose and poly-ethylenimine resin for positively charging with the variation of volume ratio. The zeta potential value of the positively charged filter is +37.92 mV at the glass fiber and cellulose content ratio of 50 : 50 with resin content of 100%, while that of the PSL test particle is -23.5 mV at pH 7. The removal efficiency of the electro-positively charged filter is 98% for PSL particles of 0.11 ${\mu}m$, while that of the negatively charged filter is 7%. The positively charged filter media showed the potential to be an effective method for removing fine particles from the contaminated water for liquid filtration.

Study of Separation Mechanism According to the Constraint Condition of Explosive Bolts (폭발볼트의 구속환경에 따른 분리메커니즘 연구)

  • Jeong, Donghee;Lee, Youngwoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.67-74
    • /
    • 2016
  • Explosive bolt is one of separation device that uses high explosive charge, and is separated by pressure formed by an explosion and the resulting shock waves. Explosive bolt having such a mechanism would have to be designed to minimize shock and debris formation generated during separation. In this study, separation tests were carried out with distance as variable for restraining the explosive bolt (Air Gap). Bolt release and its separating shape with variation of air gap is observed, and we used accelerometer to measure the shock wave transmitted through a bound object. In addition, separation behavior of explosive bolt is analyzed using ANSYS AUOTODYN program. By comparing the results of previously performed experiments and analysis, we could confirm the effects of air gap to the release behavior of explosive bolt, and decide optimum constraining environment for specific separation bolts.

Numerical Analysis of Pulsating Heat Pipe Based on Separated Flow Model

  • Kim Jong-Soo;Im Yong-Bin;Bui Ngoc Hung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1790-1800
    • /
    • 2005
  • The examination on the operating mechanism of a pulsating heat pipe (PHP) using visualization revealed that the working fluid in the PHP oscillated to the axial direction by the contraction and expansion of vapor plugs. This contraction and expansion is due to the formation and extinction of bubbles in the evaporating and condensing section, respectively. In this paper, a theoretical model of PHP was presented. The theoretical model was based on the separated flow model with two liquid slugs and three vapor plugs. The results show that the diameter, surface tension and charge ratio of working fluid have significant effects on the performance of the PHP. The following conclusions were obtained. The periodic oscillations of liquid slugs and vapor plugs were obtained under specified parameters. When the hydraulic diameter of the PHP was increased to d=3mm, the frequency of oscillation decreased. By increasing the charging ratio from 40 to 60 by volume ratio, the pressure difference between the evaporating section and condensing section increased, the amplitude of oscillation reduced, and the oscillation frequency decreased. The working fluid with higher surface tension resulted in an increase in the amplitude and frequency of oscillation. Also the average temperature of vapor plugs decreased.

Stratified Degree Characteristics on Fuel Mixture According to Ambient Temperature and Pressure in a Constant Volume Combustion Chamber (정적연소기내에서의 분위기 온도 및 압력에 따른 혼합기 분포에 관한 성층화 정도 특성)

  • Lee Kihyung;Lee Changsik;Lee Changhee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.2 s.233
    • /
    • pp.180-188
    • /
    • 2005
  • It is well known that a lean burn engine caused by stratified mixture formation has many kinds of advantages to combustion characteristics, such as higher thermal efficiency and lower CO, NOx levels than conventional homogeneous mixture combustion. Although this combustion can achieve low fuel consumption technology, it produces much unburned hydrocarbon and soot because of heterogeneous equivalence ratio in the combustion chamber. Therefore, the stratified mixture formation technology is very important to obtain the stable lean combustion. In this paper, fundamental studies for stratified combustion were carried out using a constant volume combustion chamber. The local effect of mixture formation according to control air-fuel distribution in the chamber was examined experimentally. In addition, the effect of turbulence on stratified charge combustion process was observed by schlieren photography. From this study, we found that the flame propagation speed increase with swirl flow and the swirl promotes the formation of fuel and air mixture.

A Study on the Development of an Electrostatic Eliminator and Evaluating Method of Explosion-Protection Construction (방폭형 제전기의 개발 및 평가방법에 관한 연구)

  • Choi, Sang-Won
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.49-54
    • /
    • 2014
  • Electrostatic eliminators are essential in various areas of manufacturing industries to protect electrostatic hazards and to reduce inferior products. For ion sources used in the charge neutralizers, there are corona discharge, soft X-ray, and ultraviolet and glow discharge. Among them, corona discharge is generally used, because the corona discharge can easily and economically produce positive and negative ions including electrons in air at atmospheric pressure. But it is necessary to equip explosion-protection electrostatic eliminators wherever hazardous atmosphere. The electrostatic eliminators and their testing method of explosion-protection type have been developed in this research. The contents and scope of the research as follows; developing the type 'Ex s IIB T4' electrostatic eliminator of explosion-protection; developing the type 'Ex s d IIB T4' electrostatic eliminator of explosion-protection; developing the explosion-protection performance testing method of electrostatic eliminator for using AC power source.