• Title/Summary/Keyword: Charge Coupled Device-Camera

Search Result 122, Processing Time 0.025 seconds

Study on Biophoton Emission from roots of Angelica gigas N., Angelica sinensis D., and Angelica acutiloba K (한국 당귀, 중국 당귀, 일본 당귀의 생체광자(Biophoton) 방출 비교 연구)

  • Park, Wan-Su;Lee, Chang-Hoon;Soh, Kwang-Sup;Lee, Young-Jong;Lee, Choong-Yeo;Lee, Tae-Hee;Kim, Youn-Sub;Kim, Do-Hoon
    • The Korea Journal of Herbology
    • /
    • v.22 no.4
    • /
    • pp.95-100
    • /
    • 2007
  • Objectives : The purpose of this study is to investigate the delayed luminescence-biophoton emission from roots of Angelica gigas N., Angelica sinensis D., and Angelica acutiloba K These three species of Genus Angelica are now used as 'Danggui' in Traditional Korean Medicine. Methods : Randomly selected samples from roots of Angelica gigas N., Angelica sinensis D., and Angelica acutiloba K were radiated with 150 W metal halide lamp for 1 minute. After radiation, biophoton emissions of each sample were detected by electron multiplication-charge coupled device camera. The detected biophoton image was calculated with unit of counts per pixel. Results : The average and maximum biophoton emissions of delayed luminescence with electron multiplication ratio of ${\times}150$ and ${\times}250$were distinguished significantly between Angelica gigas N. and the other two species. Conclusions : These results suggest that biophoton imaging of roots of Angelica gigas N., Angelica sinensis D., and Angelica acutiloba K. could become the meaningful method for the study of differentiation between root of Angelica gigas N. and the other two species, Angelica sinensis D. and Angelica acutiloba K.

  • PDF

Smart Fire Image Recognition System using Charge-Coupled Device Camera Image (CCD 카메라 영상을 이용한 스마트 화재 영상 인식 시스템)

  • Kim, Jang-Won
    • Fire Science and Engineering
    • /
    • v.27 no.6
    • /
    • pp.77-82
    • /
    • 2013
  • This research suggested smart fire recognition system which trances firing location with CCD camera with wired/wire-less TCP/IP function and Pan/Tilt function, delivers information in real time to android system installed by smart mobile communication system and controls fire and disaster remotely. To embody suggested method, firstly, algorithm which applies hue saturation intensity (HSI) Transform for input video, eliminates surrounding lightness and unnecessary videos and segmentalized only firing videos was suggested. Secondly, Pan/Tilt function traces accurate location of firing for proper control of firing. Thirdly, android communication system installed by mobile function confirms firing state and controls it. To confirm the suggested method, 10 firing videos were input and experiment was conducted. As the result, all of 10 videos segmentalized firing sector and traced all of firing locations.

A Study on Pantograph Sliding Plate Abrasion Measurement and Management using CCD(Charge-Coupled Device) Camera (전하결합소자(CCD : Charge-Coupled Device) 카메라를 이용한 판타그라프 습판마모 자동측정 및 관리방안 연구)

  • Lee, Seong-Gwon;Lee, Dae-WOn;An, Cheon-Heon;Oh, Sang-Yoon;Kim, Seong-Min
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1344-1368
    • /
    • 2007
  • The Advanced countries including Japan, USA and European countries are adopting automatic system(e.g., auto-measurement using CCD camera) for measuring pantograph sliding plate and wheel abrasion to minimize manpower for E.M.U(Electric Multiple Unit) inspection and maintenance as part of management rationalization of railroad Corporation since late 1980's. In Korea, as part of scheme of business rationalization, automatic system for measuring pantograph sliding plate and wheel abrasion started to draw industry attention since late 1990s, and the system started to be installed in newly built depots of Korea Railroad Corporation since 2002. This study hopefully provides the base for realizing business rationalization and applying the advanced technology developed by Korea, the country of powerful IT basis, to overseas railroad organizations by examining automatic system for measuring pantograph sliding plate abrasion using existing CCD cameras produced domestically and in foreign countries to study cases(organizations in Korea) for improvement of measurement, management and inspection of pantograph sliding plate abrasion using CCD cameras with new cutting-edge technology; and by applying the study result to railroad organizations in metropolitan areas in Korea.

  • PDF

Development of Vision system for Back Light Unit of Defect (백라이트 유닛의 결함 검사를 위한 비전 시스템 개발)

  • Han, Chang-Ho;Oh, Choon-Suk;Ryu, Young-Kee;Cho, Sang-Hee
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.4
    • /
    • pp.161-164
    • /
    • 2006
  • In this thesis we designed the vision system to inspect the defect of a back light unit of plat panel display device. The vision system is divided into hardware and inspection algorithm of defect. Hardware components consist of illumination part, robot-arm controller part and image-acquisition part. Illumination part is made of acrylic panel for light diffusion and five 36W FPL's(Fluorescent Parallel Lamp) and electronic ballast with low frequency harmonics. The CCD(Charge-Coupled Device) camera of image-acquisition part is able to acquire the bright image by the light coming from lamp. The image-acquisition part is composed of CCD camera and frame grabber. The robot-arm controller part has a role to let the CCD camera move to the desired position. To take inspections of surface images of a flat panel display it can be controlled and located every nook and comer. Images obtained by robot-arm and image-acquisition board are saved on the hard-disk through windows programming and are tested whether there are defects by using the image processing algorithms.

IMAGE DATA CHAIN ANALYSIS FOR SATELLITE CAMERA ELECTRONIC SYSTEM

  • Park, Jong-Euk;Kong, Jong-Pil;Heo, Haeng-Pal;Kim, Young-Sun;Chang, Young-Jun
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.791-793
    • /
    • 2006
  • In the satellite camera, the incoming light source is converted to electronic analog signals by the electronic component for example CCD (Charge Coupled Device) detectors. The analog signals are amplified, biased and converted into digital signals (pixel data stream) in the video processor (A/Ds). The outputs of the A/Ds are digitally multiplexed and driven out using differential line drivers (two pairs of wires) for cross strap requirement. The MSC (Multi-Spectral Camera) in the KOMPSAT-2 which is a LEO spacecraft will be used to generate observation imagery data in two main channels. The MSC is to obtain data for high-resolution images by converting incoming light from the earth into digital stream of pixel data. The video data outputs are then MUXd, converted to 8 bit bytes, serialized and transmitted to the NUC (Non-Uniformity Correction) module by the Hotlink data transmitter. In this paper, the video data streams, the video data format, and the image data processing routine for satellite camera are described in terms of satellite camera control hardware. The advanced satellite with very high resolution requires faster and more complex image data chain than this algorithm. So, the effective change of the used image data chain and the fast video data transmission method are discussed in this paper

  • PDF

The Development of Visual Inspection for Length Measurement of Injection Product Using Vision System (Vision System을 이용한 사출제품의 길이 측정용 시각검사 System 개발)

  • J.Y. Kim;B.S. Oh;S. You
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.126-134
    • /
    • 1997
  • In this study, We made visual inspection system using Vision Board. It is consist of an illuminator (a fluorescent lamp), image input device (CCD (Charge-Coupled Device) camera), image processing system(Vision Board(FARAMVB-02)), image output device (video monitor, printer), and a measuring instrument(TELMN1000). Length measurement by visual inspection system make use of 100mm guage block(instead of calculating distance between a camera and a object). It measured horizontal and vertical length factor from 400mm to 650mm by increasing 50mm. In this place, measured horizontal and vertical length factor made use of length measure- ment of a injection. A measuring instrument used to ompare a measured length of a injection visual inspection system with it. In conclusion, length measurement of a injection compared a measuring instrument with visual inspecion system using length factor of 100mm gauge block. We find that maximum error of length is 0.55mm when it compar with the measuring value of two devices(FARAMVB-02, TELMN1000). Program of visual inspection system is made up Borland C++3.1.

  • PDF

Development of Automatic Hole Position Measurement System using the CCD-camera (CCD-카메라를 이용한 홀 변위 자동측정시스템 개발)

  • 김병규;최재영;강희준;노영식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.127-130
    • /
    • 2004
  • For the quality control of the industrial products, an automatic hole measuring system has been developed. The measurement device allows X-Y movement due to contact forces between a hole and its own circular cone and the device is attached to an industrial robot. Its measurement accuracy is about 0.04mm. This movement of the plate is measured by two LVDT sensor system. But this system using the LVDT sensors is restricted by high cost and precision of measurement and correspondence of environment so particularly, a vision system with CCD-Camera is discussed in this paper for the above mentioned purpose. The device consists of two of two links jointed with hinge pins basically and, they guarantee free movement of the touch prove attached on the second link in the same plane. These links are returned to home position by the spring plungers automatically after each process for the next one. On the surface of the touch prove, it has a circular white mark for camera recognition. The system detect and notify the center coordinate of capture mark image through the image processing. Its measuring accuracy has been proved to be about $\pm$0.01mm through the repeated implementation over 200 times. This technique will shows the advantage of touch-indirect image capture idea using cone-shaped touch prove in various symmetrical shaped holes particulary, like tapped holes, chamfered holes, etc As a result, we attained our object in a view of the accuracy, economical efficiency, and functionality

  • PDF

NON-UNIFORMITY CORRECTION- SYSTEM ANALYSIS FOR MULTI-SPECTRAL CAMERA

  • Park Jong-Euk;Kong Jong-Pil;Heo Haeng-Pal;Kim Young Sun;Chang Young Jun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.478-481
    • /
    • 2005
  • The PMU (Payload Management Unit) is the main subsystem for the management, control and power supply of the MSC (Multi-Spectral Camera) Payload operation. It is the most important function for the electro-optical camera system that performs the Non-Uniformity Correction (NUC) function of the raw imagery data, rearranges the data from the CCD (Charge Coupled Device) detector and output it to the Data Compression and Storage Unit (DCSU). The NUC board in PMU performs it. In this paper, the NUC board system is described in terms of the configuration and the function, the efficiency for non-uniformity correction, and the influence of the data compression upon the peculiar feature of the CCD pixel. The NUC board is an image-processing unit within the PMU that receives video data from the CEV (Camera Electronic Unit) boards via a hotlinkand performs non-uniformity corrections upon the pixels according to commands received from the SBC (Single Board Computer) in the PMU. The lossy compression in DCSU needs the NUC in on-orbit condition.

  • PDF

Standoff Raman Spectroscopic Detection of Explosive Molecules

  • Chung, Jin Hyuk;Cho, Soo Gyeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1668-1672
    • /
    • 2013
  • We developed a standoff Raman detection system for explosive molecules (EMs). Our system was composed of reflective telescope with 310 mm diameter lens, 532 nm pulse laser, and Intensified Charge-Coupled Device (ICCD) camera. In order to remove huge background noise coming from ambient light, laser pulses with nanosecond time width were fired to target sample and ICCD was gated to open only during the time when the scattered Raman signal from the sample arrived at ICCD camera. We performed standoff experiments with military EMs by putting the detector at 10, 20 and 30 m away from the source. The standoff results were compared with the confocal Raman results. Based on our standoff experiments, we were able to observe the peaks in the range of 1200 and $1600cm^{-1}$, where vibrational modes of nitro groups were appeared. The wave numbers and shapes of these peaks may serve as good references in detecting and identifying various EMs.

Development of Autometic Tomato Grade System with Using a Color Image Processing (칼라 영상을 이용한 토마토 자동 선별시스템의 개발)

  • 이지훈;최연호;김우현;윤경섭;권우현
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2529-2532
    • /
    • 2003
  • The quality of agricultural products is represented a degree of freshness and a special qualify that has a close relation to commercial value. To grade tomatoes, it used to nondestructive equipment of a charge-coupled device(CCD) camera and near-infrared(NIR) spectrum analysis method. The NIR spectrum analysis method is used to determine internal qualities such as a brix and an acidity. The CCD camera is used to measure external qualities like color and a size of tomatoes. This paper explaines the structure and movement of the automatic grade system and applies the algorithm for deformed tomtatoes and characteristics of tomatoes through image processing to the grade system.

  • PDF