• 제목/요약/키워드: Charge Calculation

검색결과 279건 처리시간 0.02초

New Calculation of Charge Generation Efficiency and Photocurrent in Organic Photoconducting Device

  • Lee, Choong-Kun;Oh, Jin-Woo;Choi, Chil-Sung;Lee, Nam-Soo;Kim, Nak-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권1호
    • /
    • pp.97-101
    • /
    • 2009
  • A new approach was applied to examine the charge generation and transport in organic photoconductive devices by Monte‐Carlo simulation utilizing multiple site interactions of carriers with all other charges within Coulomb radius. Stepwise generation frame was considered first by a charge separation process that was counted in two separate transactions, i.e., hopping against physical decay and dissociation against recombination. Thereafter, diffusion/ drifting process of free carriers was counted to follow. This method enables to examine readily the photocurrent generated alongside the charge generation efficiency. The field and temperature dependences of the efficiency and photocurrent were obtained comparable to Onsager’s and experimental data.

Prediction of Hydroxyl Substitution Site(s) of Phenol, Monochlorophenols and 4-Chloronitrobenzene by Atomic Charge Distribution Calculations

  • Lee, Byung-Dae;Lee, Min-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권4호
    • /
    • pp.787-790
    • /
    • 2009
  • The predictions of the radical reaction sites for phenol, 2-, 3- and 4-chlorophenols (CPs) and 4-chloronitrobenzene (CNB) were studied by atomic charge distribution calculations. The atomic charge distributions on each atom of these molecules were obtained using the CHelpG and MK (Merz-Kollman/Singh) methods with the optimized structural parameters determined by DFT calculation at the level of BLYP/6-311++G(d,p). By comparing the experimentally obtained hydroxyl addition site(s) and the calculated atomic charges on carbon atoms of phenol and CPs, we found that hydroxyl substitution by oxidation reaction mainly occurred to the carbon(s) with high atomic charges. With these results, we were easily able to predict the position(s) of the ·OH reaction site(s) of phenol, CPs and CNB through atomic charge distribution calculations.

엑서지를 이용한 지역난방 열요금 제도 제안 (Suggestion for a New Exergy-Based Heat-Tariff Assessment for a District-Heating System)

  • 문정환;유호선;이재헌;문승재
    • 설비공학논문집
    • /
    • 제29권4호
    • /
    • pp.202-211
    • /
    • 2017
  • In this study, the exergy that can be reflected in the energetic and economic values was used to assess the heat tariff of a district heating (DH) system instead of the enthalpy. It is difficult to directly apply the exergy to the current heat-charge system because of the complicated calculation; therefore, the difference between the supply and return temperatures was converted to the exergy-temperature difference for the ease of the heat-amount calculation. As a result of the exergy analysis for a DH substation, the exergy-temperature difference did not affect the surrounding temperature and pressure loss. The supply temperature and the maximum difference between the supply temperature and the return temperature exerted the main effect on the exergy-temperature difference. The new heat charge of a DH user was slightly reduced in winter compared with the previous charge, but the heat charges in the other seasons are almost the same. It is concluded from the assessment of the heat tariff for which the exergy is used that this tariff is more feasible for both DH suppliers and consumers compared with enthalpy.

하전입자의 응집성장에 대한 수치적 연구 (Numerical Simulation for the Aggregation of Charged Particles)

  • 박형호;김상수;장혁상
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.605-611
    • /
    • 2001
  • A numerical technique for simulating the aggregation of charged particles was presented with a Brownian dynamic simulation in the free molecular regime. The Langevin equation was used for tracking each particle making up an aggregate. A periodic boundary condition was used for calculation of the aggregation process in each cell with 500 primary particles of 16 nm in diameter. We considered the thermal force and the electrostatic force for the calculation of the particle motion. The morphological shape of aggregates was described in terms of the fractal dimension. The fractal dimension for the uncharged aggregate was $D_{f}=1.761$. The fractal dimension changed slightly for the various amounts of bipolar charge. However, in case of unipolar charge, the fractal dimension decreased from 1.641 to 1.537 with the increase of the average number of charges on the particles from 0.2 to 0.3 in initial states.

  • PDF

Molecular Orbital Calculation on the Conflguration of Hydroxyl Group in Hexagonal Hydroxyapatite

  • Chang, Myung-Chul
    • 한국세라믹학회지
    • /
    • 제42권5호
    • /
    • pp.304-307
    • /
    • 2005
  • The possible configurations of hydroxyl group in hexagonal hydroxyapatite were identified through molecular orbital calculation. The molecular orbital interaction between O and H in hydroxyl column was analyzed using charge variation and Bond Overlap Population (BOP). We supposed 5 kinds of O-H bond configurations as cluster types of I, II, III, IV, and V. Mulliken's population analysis was applied to evaluate ionic charges of O, H, P, and Ca ions, and BOPs (Bond Overlap Populations) in order to discuss the bond strength change by the atomic arrangement. The stability of each O-H bond configuration was analyzed using bond overlap and ionic charge.

유전율 및 도전율을 고려한 765kV 송전선하의 전계에 의한 인체내부 유도 전류밀도 해석 (Analysis on Induced Current Density by Electric Field of Human under the 765 kV Transmission Line Considering Permittivity and Conductivity)

  • 민석원;송기현;양광호;주문노
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권8호
    • /
    • pp.461-465
    • /
    • 2004
  • This paper analysed the induced current density by electric field of human body under the 765 kV transmission line considering permittivity and conductivity. As permittivity of human body is very high as $10^6$ at 60 Hz, special numerical computation technique in Surface Charge Method(SCM) for composite media with extremely different properties is applied to reduce calculation error of induced current density and electric field inside the human body. Calculation results show that the average of the induced current density inside human body is about 3mA/$m^2$, which is less than ICNIRP criterion (10mA/$m^2$).

Flyback switching loss analysis by capacitor charge and energy conservation

  • Jin, ChengHao;Chung, Bong-Geun;Moon, SangCheol;Koo, Gwan-Bon
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2015년도 전력전자학술대회 논문집
    • /
    • pp.179-180
    • /
    • 2015
  • The task of measuring losses becomes more challenging with ever increasing efficiencies and operating frequencies in power electronics applications. Generally, the process of traditional switching loss calculation in flyback converter is very complicated. MOSFET drain-source voltage and current waveforms are needed to calculate switching loss. However, as we know in switched capacitor converter, switching loss can be easily calculated by charge and energy conservation law with known initial and final capacitor voltages. In this paper, the same method is applied to fly-back converter switching loss analysis to simplify calculation procedure.

  • PDF

하전 입자의 비구형 응집 성장에 대한 수치적 연구 (Numerical Simulation far the Non-Spherical Aggregation of Charged Particles)

  • 박형호;김상수;장혁상
    • 대한기계학회논문집B
    • /
    • 제26권2호
    • /
    • pp.227-237
    • /
    • 2002
  • A numerical technique for simulating the aggregation of charged particles was presented with a Brownian dynamic simulation in the free molecular regime. The Langevin equation was used for tracking each particle making up an aggregate. A periodic boundary condition was used for calculation of the aggregation process in each cell with 500 primary particles of 16 nm in diameter. We considered the thermal force and the electrostatic force for the calculation of the particle motion. The electrostatic force on a particle in the simulation cell was considered as a sum of electrostatic forces from other particles in the original cell and its replicate cells. We assumed that the electric charges accumulated on an aggregate were located on its center of mass, and aggregates were only charged with pre-charged primary particles. The morphological shape of aggregates was described in terms of the fractal dimension. In the simulation, the fractal dimension for the uncharged aggregate was D$\_$f/ = 1.761. The fractal dimension changed slightly for the various amounts of bipolar charge. However, in case of unipolar charge, the fractal dimension decreased from 1.641 to 1.537 with the increase of the average number of charges on the particles from 0.2 to 0.3 in initial states. In the bipolar charge state, the average sizes of aggregates were larger than that of the uncharged state in the early and middle stages of aggregation process, but were almost the same as the case of the uncharged state in the final stage. On the other hand, in the unipolar charge state, the average size of aggregates and the dispersion of particle volume decreased with the increasing of the charge quantities.

Theoretical Study of Trioxane Derivatives as Amphi-ionophores: Importance of Charge-Dipolar Moiety Orientation

  • Cho, Seung Joo
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권9호
    • /
    • pp.2723-2725
    • /
    • 2014
  • Recently we have reported a novel class of anion receptors which are based on 2n-crown-n topology. Trioxane derivatives are capable of anion sensing through pure aliphatic C-H hydrogen bonding. In this work, we highlight another interesting property, i.e., they can also recognize cations as normal crown ethers (3n-crown-n topology). Since the same functional moiety can recognize anions and cations, these coronands are predicted to be amphi-ionophores. However, we could not detect cations even in the gas phase. Considering trioxane is analogous to [$1_6$]starand, this was rather counter-intuitive. The calculation results show that these coronands can detect alkali metals with very low affinity. The low affinity toward cations should be responsible for this failure of experimental detection. With careful theoretical study, we found that this low affinity toward cations could be explained by the unfavorable charge-dipolar moiety orientations as proposed by Cui et al. As in the case of [$1_6$]starand, this is an example that underscores the importance of charge-dipolar moiety orientation in supramolecular interactions.

자기시스템의 Korteweg-Helmholtz 전자력 밀도와 자하 전자력 밀도의 비교 (Comparison of Korteweg-Helmholtz Electromagnetic Force Density and Magnetic Charge Force Density in Magnetic Systems)

  • 이세희;최명준;박일한
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권4호
    • /
    • pp.226-232
    • /
    • 2000
  • In magnetic systems, distribution of electromagnetic force density causes mechanical deformation, which results in noise and vibration. In this paper, Korteweg-Helmholtzs energy method and equivalent magnetic charge method are employed for comparison of their resulting distributions of force density. The force density from the Korteweg-Helmholtzs method is expresses with two Maxwell stresses on the inside and the outside fo magnetic material respectively. The other is calculated using the magnetic Coulombs law. In the numerical model of an electromagnet, their numerical results are compared. The distributions by the two methods are almost the same. And their total forces are also shown to be the same to the one calculated from the conventional Maxwell stress tensor. But the magnetic charge method is easier and more efficient in numerical calculation.

  • PDF