• Title/Summary/Keyword: Characteristics of rock mass

Search Result 315, Processing Time 0.026 seconds

Analysis for Bearing Capacity of Basalt by Vesicle Area Ratio (현무암 기공면적에 따른 지지력분석)

  • Nam, Kwan-Woo;Kim, Sang-Ho;Kim, Ju-Tae;Park, Gun-Soo;Seo, Seok-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1001-1010
    • /
    • 2009
  • The study that unconfined compression strength of intact rock which is the most important factor to determine the bearing capacity effects discontinuities in rock mass has been carried out actively so far. However, the study which is related to lithological characters such as vesicle which is one of the primary characteristics of Basalt has barely been conducted. On this study, We have analyzed the correlation-ship between vesicle and unconfined compression strength and the effect on the bearing capacity, based on the reviewing on the changes of unconfined compression strength as the amount of vesicle of Basalt. It is impossible to analyze the amount of vesicle of Basalt as measuring unit. So it was analyzed by the ratio of the core sample's surface area and another area that vesicle takes up. Also, unconfined compression strength was calculated by point load test and unconfined compression strength test. The analysis shows that vesicle area ratio and unconfined compression strength have the exponential relationship and vesicle area ration is the factor to determine the bearing capacity of Basalt. It is considered that the reliability of calculating of the bearing capacity of Basalt will be improved as we study the correlation-ship between the vesicle area ratio and rock mass grade hereafter.

  • PDF

A Study on the Characteristics of Blasting Vibration from Different Excavation Methods in Underground Mine (지하채굴공동에서 굴착방법에 따른 발파진동의 특성에 관한 연구)

  • Kang Choo-Won;Ryu Pog-Hyun
    • Explosives and Blasting
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • Recently, most of limestone quarries have been not mined by open-pit mining but by underground excavation to reduce environmental pollution. As a result, the size of underground galleries became bigger to maintain mass-production close to open-pit mining. However, the scale of pillars and galleries as well as the excavation methods may induce a few adverse problems for the stability of a mined gallery. In this study, the nomogram analysis and the prediction of rock damage zone induced by blasting were carried out. The testing conditions include concurrent blasting of two adjacent galleries, concurrent blasting of a transport drift and a inclined shaft, sequential blasting of two galleries, and separate blasting for each gallery. For each testing condition, blast vibration velocity was measured and analyzed. From the prediction formulas for blast vibration velocity derived in this study, the maximum depth of rock damage zone induced by blasting were also predicted.

The Slope Reinforcement by use of FRP (FRP를 이용한 사면보강)

  • 이상덕;권오엽;최용기
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11b
    • /
    • pp.155-180
    • /
    • 2000
  • The pattern of domestic slope construction has been steadily changed from the simpled and small-scale to the large-scale and complicated one, frequently near the existing structures, as the density of population and the traffic increases. In some cases, the slopes become steeper and larger due to the road improvement and construction. For the rock slope, the existence of discontinuity cannot be disregarded and acts as an important factor on the slope stability. Most of the existing methods for stabilizing the slope were focused on reducing the slope angle. Under the specific geographic condition, it is necessary to concentrate more efforts on the research and development of supporting system for the slope stability. As a supporting system, it is often very advantageous to use the FRP pipe grouting method that is similar to the existing soil nailing method or the rock bolting method but uses the high strength FRP pipe as a principal reinforcement in place of steel bar. Through the FRP pipe, the grout material can be injected into the rock mass to improve its shear strength to the required value. .In this study, the characteristics of FRP are investigated by the laboratory tests and the field tests. And, the practical aspects of FRP method are reviewed and analyzed.

  • PDF

Estimation of Total Displacements by RMR Grades using 3-Dimensional Numerical Analysis (3D 수치해석을 이용한 퇴적암 터널의 암반 등급별 전변위 산정)

  • Yim, Sung-Bin;Yun, Hyun-Seok;Seo, Yong-Seok;Park, Si-Hyun
    • The Journal of Engineering Geology
    • /
    • v.17 no.2 s.52
    • /
    • pp.217-224
    • /
    • 2007
  • Tunnel displacement happens during the process of stress redistribution by tunnelling. Tunnel displacement can be divided into 3 types such as displacements occurring before excavation, non-measured displacements after excavation and measured displacements after excavation. Because measurements of displacements occurring before excavation and non-measured displacement after excavation are difficult and time-consuming in the field, many researchers have studied on total displacement and its characteristics with excavation using numerical analysis. In this study, we used a 3-D back analysis to estimate total displacement by rock mass grades in tunnel constructed in sedimentary rock. We reduced error between measured displacements and calculated displacements from a 3-D numerical analysis, and then estimated suitable rock mass properties by RMR classes. Ultimately, Logistic nonlinear regressions of total displacement with tunnelling were estimated by least square estimation.

A Study on the Blasting Dynamic Analysis using the Measurement Vibration Waveform (실측진동파형을 이용한 발파 동해석 기법에 관한 연구)

  • 최성웅;박의섭;선우춘;정소걸
    • Tunnel and Underground Space
    • /
    • v.14 no.2
    • /
    • pp.108-120
    • /
    • 2004
  • Dynamic analysis has been increased recently to analyze the effect of the blasting vibration on the rock mass as well as the surrounding structures. The major input parameter far the general dynamic analysis, however, is merely the blasting pressure which can be obtained from the blasting pressure-time history curves. But in case of the complicate geological condition it is not simple to apply the blasting pressure on the numerical analysis because e ground vibration characteristics should be obtained considering the complexity of ground condition. Therefore the authors tried to use the blasting vibration waveform as an input data This vinylation frequency could be obtained from the test blasting in the Pasir mine, Indonesia. Through the dynamic numerical analysis on the slopes in Pasir, the current situation of this slope could be simulated precisely.

A Study on the Blasting Dynamic Analysis Using Superposition Modeling Data (중첩모델링자료를 활용한 발파 동해석 기법에 관한 연구)

  • Park, Ji-Woo;Kang, Choo-Won;Go, Jin-Seok;Jang, Ho-Min
    • Tunnel and Underground Space
    • /
    • v.18 no.4
    • /
    • pp.280-288
    • /
    • 2008
  • Since blast-induced vibration may cause serious problem to the rock mass as well as the nearby structures, the prediction of blast-induced vibration and the stability evaluation must be performed before blasting activities. Dynamic analysis using measurement vibration waveform which is measured by bore hole blasting or test blasting has been increased recently in order to analyze the effect of the blast-induced vibration. The waveform made by bore hole blasting has the similar vibration level and duration to those the waveform of sing hole has. However, there can be a little difference in attenuation characteristics with the blast induced vibration waveform in the field. Through the superposition modeling of single hole waveform, I obtained the vibration waveform on the blasting condition changes and conducted dynamic analysis using this waveform in this study.

A Numerical Study on Hydraulic Behavior in a Fractured Rock Medium with Hydromechanical Interaction (수리역학적 상호작용을 고려한 균열암반매질에서의 수리학적 거동에 대한 수치적 연구)

  • Jeong, Woochang;Park, Youngjin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.2
    • /
    • pp.61-68
    • /
    • 2009
  • This paper presents the numerical investigation for the hydraulic behavior of a fractured rock mass with a hydromechanical interaction which may be considered during the in-situ hydraulic injection test. These experiments consist in a series of flow meter injection tests for fractures existing along an open hole section installed in a borehole, and experimental results are applied for testing a numerical model developed to the analysis and prediction of such hydromechanical interactions. Field experimental results show that conductive fractures form a dynamic and interdependent network, that individual fractures cannot be adequately modeled as independent systems, that new fluid intaking zones generate when pore pressure exceeds the minimum principal stress magnitude in that borehole, and that pore pressures much larger than this minimum stress can be further supported by the circulated fractures. In this study, these characteristics are investigated numerically how to influence the morphology of the natural fracture network in a rock mass by using a discrete fracture ntework model.

  • PDF

An Introduction to the DECOVALEX-2019 Task G: EDZ Evolution - Reliability, Feasibility, and Significance of Measurements of Conductivity and Transmissivity of the Rock Mass (DECOVALEX-2019 Task G 소개: EDZ Evolution - 굴착손상영역 평가를 위한 수리전도도 및 투수량계수 측정의 신뢰도, 적합성 및 중요성)

  • Kwon, Saeha;Min, Ki-Bok
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.306-319
    • /
    • 2020
  • Characterizations of Excavation Damage Zone (EDZ), which is hydro-mechanical degrading the host rock, are the important issues on the geological repository for the spent nuclear fuel. In the DECOVALEX 2019 project, Task G aimed to model the fractured rock numerically, describe the hydro-mechanical behavior of EDZ, and predict the change of the hydraulic factor during the lifetime of the geological repository. Task G prepared two-dimensional fractured rock model to compare the characteristics of each simulation tools in Work Package 1, validated the extended three-dimensional model using the TAS04 in-situ interference tests from Äspö Hard Rock Laboratory in Work Package 2, and applied the thermal and glacial loads to monitor the long-term hydro-mechanical response on the fractured rock in Work Package 3. Each modelling team adopted both Finite Element Method (FEM) and Discrete Element Method (DEM) to simulate the hydro-mechanical behavior of the fracture rock, and added the various approaches to describe the EDZ and fracture geometry which are appropriate to each simulation method. Therefore, this research can introduce a variety of numerical approaches and considerations to model the geological repository for the spent nuclear fuel in the crystalline fractured rock.

A Study on the Temperature Distribution of Rock Mass at KAERI Underground Research Tunnel: Verification on the Result of Borehole Heater Test (지하처분연구시설(KURT) 내 암반의 온도 분포에 관한 연구 : 시추공히터시험 결과의 검증)

  • Yoon, Chan-Hoon;Choi, Young-Chul;Kwon, Sang-Ki;Choi, Heui-Joo
    • Tunnel and Underground Space
    • /
    • v.23 no.4
    • /
    • pp.297-307
    • /
    • 2013
  • In this study, the thermal analysis is carried out for a result of borehole heater test using ABAQUS ver 6.10 based on finite element analysis code. Thermal-mechanical rock properties as determined by laboratory tests before the in situ test and characteristics of the atmosphere at the test section are used as the initial condition. When comparing the results of the in situ test and thermal analysis, the temperature of C3 observation hole that is 0.9 m away from the heater showed very similar patterns and figures (about $1.3^{\circ}C$ difference). But the results of the A and B observation hole showed a significant difference around $15^{\circ}C{\sim}20^{\circ}C$. To find the reason for these results, the over-coring is carried out for the A1 and B1 observation holes. As a result of checking the excavated rock core with the naked eye, there is no problem on the number and position of the sensor as the test plan. However the state of cement injection in the observation hole is poor.

Gamma ray shielding characteristics and exposure buildup factor for some natural rocks using MCNP-5 code

  • Mahmoud, K.A.;Sayyed, M.I.;Tashlykov, O.L.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1835-1841
    • /
    • 2019
  • The mass attenuation coefficient ${\mu}_m$ for eight rock samples having different chemical composition was simulated using the MCNP 5 code in energy range($0.002MeV{\leq}E{\leq}10MeV$). Moreover, the ${\mu}_m$ for the studied rock samples was computed theoretically using XCOM database. The comparison between simulated and computed data for all selected rock samples showed a good agreement with differences varied between 0.01 and 8%. The highest ${\mu}_m$ was found for basalt rocks M2 and M1 and the lowest one is reported for limestone rocks Dike. The simulated values of the ${\mu}_m$ then were used to calculate other important shielding parameters such as the mean free path, effective electron density and effective atomic number. The exposure buildup factor EBF was also computed for the selected rocks with the contribution of G-P fitting parameters and the highest EBF attended by the basalt sample Sill and varied between 1.022 and 744 in the energy range between ($0.015MeV{\leq}E{\leq}15MeV$) but the lowest EBF achieved by basalt sample M2 and varied between 1.017 and 491 in the same energy range.