• Title/Summary/Keyword: Characteristics of rock mass

Search Result 315, Processing Time 0.021 seconds

Evaluation of Stability and Deterioration Characteristics for the Rock-carved Standing Buddha Triad in Gyeongju Seoak-dong, Korea (경주 서악동 마애여래삼존입상의 손상특성 및 안정성 평가)

  • Lee, Chan Hee;Choie, Myoungju
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.137-150
    • /
    • 2021
  • The rock-carved standing Buddha triad in Seoak-dong is a large stone Buddha statue of the Unified Silla era (AD 676 to 935) in ancient Korea, built near the top of the southeastern side of mountain Seondosan in Gyeongju, is characterized by its locational importance, the powerful Amitabha and the gentle sculptural technique of the Bodhisattva. In particular, Amitabha Buddha in andesite rock slope with biotite granite pedestal and two Bodhisattva parallel made by alkali granites seems to express the dignity through the color and texture of the stones. In the Amitabha Buddha, deterioration characteristics are accelerating due to the combination of various joint systems, instability of the slopes and relaxation by the root pressure of plants occurring at the top. In addition, physical properties have deteriorated owing to the increase of discontinuous surfaces as joints, cracks and scalings, and the coverage of algae and lichen is also high. Therefore, deterioration degree in Buddha triad is accelerated due to the physical weathering characteristics from natural rock mass and various biological invasion.

A review of experimental and numerical studies on crack growth behaviour in rocks with pre-existing flaws

  • G. Sivakumar;V.B. Maji
    • Geomechanics and Engineering
    • /
    • v.35 no.4
    • /
    • pp.333-366
    • /
    • 2023
  • Rock as a mass generally exhibits discontinuities, commonly witnessed in rock slopes and underground structures like tunnels, rock pillars etc. When these discontinuities experiences loading, a new crack emerges from them which later propagates to a macro scale level of failure. The failure pattern is often influenced by the nature of discontinuity, geometry and loading conditions. The study of crack growth in rocks, namely its initiation and propagation, plays an important role in defining the true strength of rock and corresponding failure patterns. Many researchers have considered the length of the discontinuity to be fully persistent on rock or rock-like specimens by both experimental and numerical methods. However, only during recent decades, there has been a substantial growth in research interest with non-persistent discontinuities where the crack growth and its propagation phenomenon were found to be much more complex than persistent ones. The non-persistence fractures surface is generally considered to be open and closed. Compared to open flaws, there is a difference in crack growth behaviour in closed or narrow flaws due to the effect of surface closure between them. The present paper reviews the literature that has contributed towards studying the crack growth behaviour and its failure characteristics on both open and narrow flaws subjected to uniaxial and biaxial compression loading conditions.

Trends in Predicting Groutability Based on Correlation Analysis between Hydrogeological and Rock Engineering Indices: A Review (수리지질 및 암반공학 지수 간 상관분석을 통한 절리암반 내 그라우트 주입성 예측 연구 동향: 리뷰논문)

  • Kwangmin Beck;Seonggan Jang;Seongwoo Jeong;Seungwoo Jason Chang;Minjune Yang
    • The Journal of Engineering Geology
    • /
    • v.33 no.2
    • /
    • pp.307-322
    • /
    • 2023
  • Rock-mass grouting plays a crucial role in the construction of dams and deep caverns, effectively preventing seepage in the foundations, enhancing stability, and mitigating hazards. Most rock grouting is affected by hydrogeological and rock engineering indices such as rock quality designation (RQD), rock mass quality (Q-value), geological strength index (GSI), joint spacing (Js), joint aperture (Ap), lugeon value (Lu), secondary permeability index (SPI), and coefficient of permeability (K). Therefore, accurate geological analysis of basic rock properties and guidelines for grouting construction are essential for ensuring safe and effective grouting design and construction. Such analysis has been applied in dam construction sites, with a particular focus on the geological characteristics of bedrock and the development of prediction methods for grout take. In South Korea, many studies have focused on grout injection materials and construction management techniques. However, there is a notable lack of research on the analysis of hydrogeological and rock engineering information for rock masses, which are essential for the development of appropriate rock grouting plans. This paper reviews the current state of research into the correlation between the grout take with important hydrogeological and rock engineering indices. Based on these findings, future directions for the development of rock grouting research in South Korea are discussed.

Tunnel-Lining Back Analysis for Characterizing Seepage and Rock Motion (투수 및 암반거동 파악을 위한 터널 라이닝의 역해석)

  • Choi Joon-Woo;Lee In-Mo;Kong Jung-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.248-255
    • /
    • 2006
  • Among a variety of influencing components, time-variant seepage and long-term underground motion are important to understand the abnormal behavior of tunnels. Excessiveness of these two components could be the direct cause of severe damage on tunnels. however, it is not easy to quantify the effect of these on the behavior of tunnels. These parameters can be estimated by using inverse methods once the appropriate relationship between inputs and results are clarified. Various inverse methods or parameter estimation techniques such as artificial neural network and least square method can be used depending on the characteristics of given problems. Numerical analyses, experiments, or monitoring results are frequently used to prepare a set of inputs and results to establish the back analysis models. In this study, a back analysis method has been developed to estimate geotechnically hard-to-known parameters such as permeability of tunnel filter, underground water table, long-term rock mass load, size of damaged zone associated with seepage and long-term underground motion. The artificial neural network technique is adopted and the numerical models developed in the firstpart are used to prepare a set of data for learning process. Tunnel behavior especially the displacements of the lining has been exclusively investigated for the back analysis.

  • PDF

Developing brittle transparent materials with 3D fractures and experimental study

  • Wang, Jing;Li, Shucai;Zhu, Weishen;Li, Liping
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.399-409
    • /
    • 2016
  • The fracture propagation mechanism and fractured rock mass failure mechanism were important research in geotechnical engineering field. Many failures and instability in geotechnical engineering were related on fractures propagation, coalescence and interaction in rock mass under the external force. Most of the current research were limited to two-dimensional for the brittleness and transparency of three-dimensional fracture materials couldn't meet the requirements of the experiment. New materials with good transparent and brittleness were developed by authors. The making method of multi fracture specimens were established and made molds that could be reused. The tension-compression ratio of the material reached above 1/6 in normal temperature. Uniaxial and biaxial loading tests of single and double fracture specimens were carried out. Four new fractures were not found in the experiment of two-dimensional fractures such as the fin shaped crack, wrapping wing crack and petal crack and anti-wing crack. The relationship between stress and strain of the specimens were studied. The specimens with the load had experienced four stages of deformation and the process of the fracture propagation was clearly seen in each stage. The expansion characteristics of the fractured specimens were more obvious than the previous research.

Numerical Analysis of Grout Flow and Injection Pressure Affected by Joint Roughness and Aperture (절리 거칠기와 간극 변화에 따른 그라우트 유동과 주입압에 관한 수치해석적 연구)

  • Jeon, Ki-Hwan;Ryu, Dong-Woo;Kim, Hyung-Mok;Park, Eui-Seob;Song, Jae-Jun
    • Tunnel and Underground Space
    • /
    • v.20 no.2
    • /
    • pp.82-91
    • /
    • 2010
  • Grouting technology is one of the ground improvement methods used in water controlling and reinforcement of rock mass in underground structure construction. It is necessarily required to find out the characteristics of grout flow through discontinuities in a rock mass for an adequate grout design and performance assessment. Laminar flow is not always applicable in simulating a grout flow in a rock mass, since the rock joints usually have apertures at a micro-scale and the flow through these joints is affected by the joint roughness and the velocity profile of the flow changes partially near the roughness. Thus, the influence of joint roughness and aperture on the grout flow in rough rock joint was numerically investigated in this study. The commercial computational fluid dynamics code, FLUENT, was applied for this purpose. The computed results by embedded Herschel-Bulkley model and VOF (volume of fluid) model, which are applicable to simulate grout flow in a narrow rock joint that is filled with air and water, were well compared with that of analytical results and previously published laboratory test for the verification. The injection pressure required to keep constant injection rate of grout was calculated in a variety of Joint Roughness Coefficient (JRC) and aperture conditions, and the effect of joint roughness and aperture on grout flow were quantified.

A Comparative Study on the REV, non-REV and Joint Network Methods for Analysis of Groundwater Flow in Jointed Rock Masses (절리암반내 지하수 유동해석을 위한 대표체적법, 비대표체적법 및 절리망 해석법의 비교 연구)

  • 문현구
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.217-228
    • /
    • 1999
  • The three methods of analysis (i) REV(representative elemental volume), (ii) non-REV and (iii) joint network analysis are introduced in this paper to analyze the groundwater flow in jointed rock mass and the inflow into underground excavations. The results from those methods are compared one another to reveal their characteristics by varying the number of joints and the diameter of the opening. The pre-processor, the so-called sequential analysis, is introduced to predict the equivalent hydraulic conductivity of a jointed rock mass having a number of intersecting joints. Using the finite element mesh, joint map and sequential analysis, the equivalent hydraulic conductivities are calculated for all 445 elements. The hydraulic inhomogeneity and the determination of the representative properties of jointed rock masses are discussed. In the REV analysis where the entire rock mass is homogenized through the representative properties, the inflow is increased regularly and consistently by increasing the joint density, the opening size and the conductivity contrast value. Though the non-REV analysis showed irregular variation of the inflow due to the local inhomogeneity allowed to individual elements, the inflow approached the REV results as the characteristic length increases. The joint network analysis showed the most sensitive reaction to the joint density, the opening size and the presence of the network crossing the opening. The reliability of the network analysis depends on the geometric data of individual joints. In view of the limited field data on joint geometry and possible uncertainty the REV and non-REV methods are considered more practical and rational than the joint network analysis.

  • PDF

A Study on the Stability of Deep Tunnels Considering Brittle Failure Characteristic (취성파괴특성을 고려한 심부터널의 안정성 평가기법 연구)

  • Park, Hyun-Ik;Park, Yeon-Jun;You, Kwang-Ho;Noh, Bong-Kun;Seo, Young-Ho;Park, Chan
    • Tunnel and Underground Space
    • /
    • v.19 no.4
    • /
    • pp.304-317
    • /
    • 2009
  • Most crystalline rocks have much higher compressive strength than tensile strength and show brittle failure. In-situ rock mass, strong enough in general sense, often fails in brittle manner when subjected to high stress exceeding strength in due of geometrically induced stress concentration or of high initial stress. Therefore, it is necessary to verify the brittle failure characteristics of rock and rock mass for proper stability assessment of underground structures excavated in great depths. In this study, damage controlled tests were conducted on biotite-granite and granitic gneiss, which are the two major crystalline rock types in Korea, to obtain the strain dependency characteristics of the cohesion and friction angle. A Cohesion-Weakening Friction-Strengthening (CWFS hereafter) model for each rock type was constructed and a series of compression tests were carried out numerically while varying confining pressures. The same tests were also conducted assuming the rock is Mohr-Coulomb material and results were compared.

New approaches to testing and evaluating the impact capability of coal seam with hard roof and/or floor in coal mines

  • Tan, Y.L.;Liu, X.S.;Shen, B.;Ning, J.G.;Gu, Q.H.
    • Geomechanics and Engineering
    • /
    • v.14 no.4
    • /
    • pp.367-376
    • /
    • 2018
  • Samples composed of coal and rock show different mechanical properties of the pure coal or rock mass. For the same coal seam with different surrounding rocks, the frequency and intensity of rock burst can be significantly different in. First, a method of measuring the strain variation of coal in the coal-rock combined sample was proposed. Second, laboratory tests have been conducted to investigate the influences of rock lithologies, combined forms and coal-rock height ratios on the deformation and failure characteristics of the coal section using this method. Third, a new bursting liability index named combined coal-rock impact energy speed index (CRIES) was proposed. This index considers not only the time effect of energy, but also the influence of surrounding rocks. At last, a new approach considering the influences of roof and/or floor was proposed to evaluate the impact capability of coal seam. Results show that the strength and elastic modulus of coal section increase significantly with the coal-rock height ratio decreasing. In addition, the values of bursting liability indexes of the same coal seam vary greatly when using the new approach. This study not only provides a new approach to measuring the strain of the coal section in coal-rock combined sample, but also improves the evaluation system for evaluating the impact capability of coal.

Numerical Analysis of Surface Displacement Due to Explosion in Tunnel (터널 내 폭발에 의한 지표 변위에 관한 수치해석적 연구)

  • Park, Hoon
    • Explosives and Blasting
    • /
    • v.38 no.4
    • /
    • pp.26-36
    • /
    • 2020
  • With the increase of expansion and use of the underground space, the possibility of an underground explosion by terrorists is increasing. In this study, after modeling a circular tunnel excavated at a depth of 50m, an explosion load was applied to the inside of the tunnel. As for the explosion load, the explosion load of the maximum explosive amount for six types of vehicle booms proposed by ATF (Bureau of Alcohol, Tobacco, and Firearms) was calculated. For the rock mass around the circular tunnel, three types of rock grades were selected according to the support pattern suggested in the domestic tunnel design. Nonlinear dynamic analysis was performed to evaluate the influence of the ground structure by examining the surface displacement using the explosion load and rock mass characteristics as parameters. As a result of the analysis, for grade 1 rock, the influence on the uplift of the surface should be considered, and for grade 2 and 3 rocks, the influence on a differential settlement should be considered. In particular, for grade 3 rocks, detailed analysis is required for ground-structure interaction within 40m. Also, it is considered that the influence of Young's modulus is the main factor for the surface displacement.