• Title/Summary/Keyword: Characteristics Classification

Search Result 3,677, Processing Time 0.038 seconds

Monitoring of Graveyards in Mountainous Areas with Simulated KOMPSAT-2 imagery

  • Chang, Eun-Mi;Kim, Min-Ho;Lee, Byung-Whan;Heo, Min
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1409-1411
    • /
    • 2003
  • The application of simulated KOMPSAT-2 imagery to monitor graveyards is to be developed. Positions calculated from image were compared with those obtained from Geographic Positioning System. With 24 checkpoints, the position of graveyards showed within 5-meter range. Unsupervised classification, supervised classification, and objected-orientation classification algorithms were used to extract the graveyard. Unsupervised classification with masking processes based on National topographic data gives the best result. The graveyards were categorized with four types in field studies while the two types of graveyards were shown in descriptive statistics. Cluster Analysis and discriminant analysis showed the consistency with two types of tombs. It was hard to get a specific spectral signature of graveyards, as they are covered with grasses at different levels and shaded from the surrounding trees. The slopes and aspects of location of graveyards did not make any difference in the spectral signatures. This study gives the basic spectral characteristics for further development of objected-oriented classification algorithms and plausibility of KOMPSAT-2 images for management of mountainous areas in the aspect of position accuracy and classification accuracy.

  • PDF

Comparison of Three Land Cover Classification Algorithms -ISODATA, SMA, and SOM - for the Monitoring of North Korea with MODIS Multi-temporal Data

  • Kim, Do-Hyung;Jeong, Seung-Gyu;Park, Chong-Hwa
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.3
    • /
    • pp.181-188
    • /
    • 2007
  • The objective of this research was to investigate the optimal land cover classification algorithm for the monitoring of North Korea with MODIS multi-temporal data based on monthly phenological characteristics. Three frequently used land cover classification algorithms, ISODATA1), SMA2), and SOM3) were employed for this study; the land cover categories were forest, grass, agricultural, wetland, barren, built-up, and water body. The outcomes of the study can be summarized as follows. First, the overall classification accuracy of ISODATA, SMA, and SOM was 69.03%, 64.28%, and 73.57%, respectively. Second, ISODATA and SMA resulted in a higher classification accuracy of forest and agricultural categories, but SOM performed better for the built-up area, bare soil, grassland, and water. A possible explanation for this difference would be related to the difference of sensitivity against the vegetation activity. This would be related to the capability of SOM to express all of their values without any loss of data by maintaining the topology between pixels of primitive data after classification, while ISODATA and SMA retain limited amount of data after normalization process. Third, we can conclude that SOM is the best algorithm for monitoring the land cover change of North Korea.

A Study on the Classification Criteria of Climatic Zones in Korean Building Code Based on Heating Degree-Days (난방도일 기반 대한민국 행정구역별 기후존 구분 기준 정립에 관한 연구)

  • Noh, Byeong Il;Choi, Jaewan;Seo, Donghyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.11
    • /
    • pp.574-580
    • /
    • 2015
  • Climatic zone in building code is an administrative district classification reflecting regional climatic characteristics. Use of Degree-Days is a fundamental method that can be used in various building design codes, analysis of building energy performance, and establishment of minimum thermal transmittance of building envelopes. Many foreign countries, such as the USA, the EU, Australia, Italy, India, China, etc., have already adapted climatic zone classification with degree-days, precipitation or amount of water vapor based on the characteristics of their own country's climate. In Korea, however, the minimum requirements for regional thermal transmittance are classified separately for the Jungbu area, Nambu area and Jeju Island with no definite criterion. In this study, degree-days of 255 Korean cities were used for climatic zone classification. Outdoor dry-bulb temperature data from the Korea Meteorological Administration for 1981~2010 was used to calculate degree-days. ArcGIS and the calculated degree-days were utilized to analyze and visualize climatic zone classification. As a result, depending on the distribution and distinctive differences in degree-days, four climatic zones were derived : 1) Central area, 2) Mountain area of Gyeonggi and Gangwon provinces, 3) Southern area, and 4) Jeju Island. The climatic zones were suggested per administrative district for easy public understanding and utilization.

A Study on Modifications and Expansions of Area Divisions of Korea in Auxiliary Table of Dewey Decimal Classification (듀이십진분류법의 지역 보조표에서 한국 지역 구분의 수정 전개 방안에 관한 연구)

  • Chung, Yeon-Kyoung
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.46 no.3
    • /
    • pp.181-201
    • /
    • 2012
  • This study aims to analyze and compare the structures of auxiliary tables regarding places - for example, Korea using several decimal classification systems such as DDC, UDC, KDC and NDC. For each auxiliary table, the codes were described in detail and the special characteristics were discussed. The common characteristics and the different aspects of different decimal classification systems were investigated as well as divisions of Korea in Korean Wikipedia and an administrative district classification system. This study suggests a new basic summary for the expansion of codes of Korea in auxiliary table in DDC with its principles and options and it will be useful for revising process of many decimal classification systems.

Application of CNN for fish classification (물고기 분류를 위한 CNN의 적용)

  • Hwang, Kwang-bok;Hwang, Sirang;Choi, Young-kiu;Yeom, Dong-hyuk;Park, Jin-hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.464-465
    • /
    • 2018
  • Bass and Bluegill, which are representative ecosystem disturbance species, are reported to be the most important factor in the reduction of domestic native fish populations in Korea. Therefore, it is necessary to develop system and field application technology for the extermination of these foreign species. Recently, the CNN(Convolutional Neural Network), one of the deep learning systems for the recognition, classification, and learning, has shown excellent performance. However, CNN data used for object recognition and classification were mainly applied to recognition and classification of other objects with distinct characteristics. This study proposes a system that applies CNN to the classification of fish species with similar characteristics.

  • PDF

A Comparative Study on Optimal Feature Identification and Combination for Korean Dialogue Act Classification (한국어 화행 분류를 위한 최적의 자질 인식 및 조합의 비교 연구)

  • Kim, Min-Jeong;Park, Jae-Hyun;Kim, Sang-Bum;Rim, Hae-Chang;Lee, Do-Gil
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.11
    • /
    • pp.681-691
    • /
    • 2008
  • In this paper, we have evaluated and compared each feature and feature combinations necessary for statistical Korean dialogue act classification. We have implemented a Korean dialogue act classification system by using the Support Vector Machine method. The experimental results show that the POS bigram does not work well and the morpheme-POS pair and other features can be complementary to each other. In addition, a small number of features, which are selected by a feature selection technique such as chi-square, are enough to show steady performance of dialogue act classification. We also found that the last eojeol plays an important role in classifying an entire sentence, and that Korean characteristics such as free order and frequent subject ellipsis can affect the performance of dialogue act classification.

Study on Classification Algorithm based on Weight of Support and Confidence Degree (지지도와 신뢰도의 가중치에 기반한 분류알고리즘에 관한 연구)

  • Kim, Keun-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.4
    • /
    • pp.700-713
    • /
    • 2009
  • Most of any existing classification algorithm in data mining area have focused on goals improving efficiency, which is to generate decision tree more rapidly by utilizing just less computing resources. In this paper, we focused on the efficiency as well as effectiveness that is able to generate more meaningful classification rules in application area, which might consist of the ontology automatic generation, business environment and so on. For this, we proposed not only novel function with the weight of support and confidence degree but also analyzed the characteristics of the weighted function in theoretical viewpoint. Furthermore, we proposed novel classification algorithm based on the weighted function and the characteristics. In the result of evaluating the proposed algorithm, we could perceive that the novel algorithm generates more classification rules with significance more rapidly.

The Comparative Study of the Nominal Terms between "Biwiron(脾胃論)" and "Soayakjeungjikgyeol(小兒藥證直訣)" (소아약증직결(小兒藥證直訣)과 비위론(脾胃論)에 기재된 용어 비교에 관한 연구)

  • Kim, Min-Gun;Lee, Byung-Wook;Kim, Eun-Ha
    • Journal of Korean Medical classics
    • /
    • v.23 no.1
    • /
    • pp.59-79
    • /
    • 2010
  • Objective : We did a comparative study about characteristics of oriental medical books. As a result, we took notice of classification in the nominal terms by semantic type of UMLS(Unified Medical Language System). By using classified nominal terms, comparative study can be more effectively. So, we selected another oriental medical book and classified nominal terms in it by semantic type of UMLS. By result of classification, we have attempted to study about comparison between oriental medical books and development of medical theories. Method :We have made a comparative study on classification in the nominal terms between "Biwiron(脾胃論)" and "Soayakjeungjikgyeol(小兒藥證直訣)" according to the below the procedure. (1) Making a nominal terms list of "Soayakjeungjikgyeol(小兒藥證直訣)" and grasping contextual meaning of nominal terms of it. (2) Modification and supplementation about semantic type of UMLS for "Soayakjeungjikgyeol(小兒藥證直訣)". Using the modified classification system, we classified nominal terms. After this process, we arranged classified nominal terms by Haansoft Hangul 2007. (3) Comparing classified nominal terms between "Biwiron(脾胃論)" and "Soayakjeungjikgyeol(小兒藥證直訣)". Result : In the "Soayakjeungjikgyeol(小兒藥證直訣)", there are more than 2,519's nominal terms and different categories of semantic type of UMLS classification from "Biwiron(脾胃論)". Through comparison between their classification of nominal terms, we can understand the characteristics of the two and their development of medical theories.

Protein Disorder/Order Region Classification Using EPs-TFP Mining Method (EPs-TFP 마이닝 기법을 이용한 단백질 Disorder/Order 지역 분류)

  • Lee, Heon Gyu;Shin, Yong Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.6
    • /
    • pp.59-72
    • /
    • 2012
  • Since a protein displays its specific functions when disorder region of protein sequence transits to order region with provoking a biological reaction, the separation of disorder region and order region from the sequence data is urgently necessary for predicting three dimensional structure and characteristics of the protein. To classify the disorder and order region efficiently, this paper proposes a classification/prediction method using sequence data while acquiring a non-biased result on a specific characteristics of protein and improving the classification speed. The emerging patterns based EPs-TFP methods utilizes only the essential emerging pattern in which the redundant emerging patterns are removed. This classification method finds the sequence patterns of disorder region, such sequence patterns are frequently shown in disorder region but relatively not frequently in the order region. We expand P-tree and T-tree conceptualized TFP method into a classification/prediction method in order to improve the performance of the proposed algorithm. We used Disprot 4.9 and CASP 7 data to evaluate EPs-TFP technique, the results of order/disorder classification show sensitivity 73.6, specificity 69.51 and accuracy 74.2.

Classification of Fall Crops Using Unmanned Aerial Vehicle Based Image and Support Vector Machine Model - Focusing on Idam-ri, Goesan-gun, Chungcheongbuk-do - (무인기 기반 영상과 SVM 모델을 이용한 가을수확 작물 분류 - 충북 괴산군 이담리 지역을 중심으로 -)

  • Jeong, Chan-Hee;Go, Seung-Hwan;Park, Jong-Hwa
    • Journal of Korean Society of Rural Planning
    • /
    • v.28 no.1
    • /
    • pp.57-69
    • /
    • 2022
  • Crop classification is very important for estimating crop yield and figuring out accurate cultivation area. The purpose of this study is to classify crops harvested in fall in Idam-ri, Goesan-gun, Chungcheongbuk-do by using unmanned aerial vehicle (UAV) images and support vector machine (SVM) model. The study proceeded in the order of image acquisition, variable extraction, model building, and evaluation. First, RGB and multispectral image were acquired on September 13, 2021. Independent variables which were applied to Farm-Map, consisted gray level co-occurrence matrix (GLCM)-based texture characteristics by using RGB images, and multispectral reflectance data. The crop classification model was built using texture characteristics and reflectance data, and finally, accuracy evaluation was performed using the error matrix. As a result of the study, the classification model consisted of four types to compare the classification accuracy according to the combination of independent variables. The result of four types of model analysis, recursive feature elimination (RFE) model showed the highest accuracy with an overall accuracy (OA) of 88.64%, Kappa coefficient of 0.84. UAV-based RGB and multispectral images effectively classified cabbage, rice and soybean when the SVM model was applied. The results of this study provided capacity usefully in classifying crops using single-period images. These technologies are expected to improve the accuracy and efficiency of crop cultivation area surveys by supplementing additional data learning, and to provide basic data for estimating crop yields.