• Title/Summary/Keyword: Characteristic simulator

Search Result 268, Processing Time 0.022 seconds

Vehicle Running Characteristic Simulator using Induction Motor (유도전동기를 이용한 차량주행특성 시뮬레이터)

  • Byun, Yeun-Sub;Kim, Young-Chol;Mok, Jei-Kyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1903-1914
    • /
    • 2011
  • In this paper, we propose vehicle running characteristic simulator. The developed simulator is configured by two induction motors which are directly coupled with each other. One motor is to simulate the vehicle drive and another motor is to simulate the vehicle dynamic load including running resistance, gradient resistance and adhesive characteristics between rail and wheel. The running characteristics of vehicle are modeled by numerical formulas. These are programed by software of embedded controller. Thus, it is possible to change several running characteristics during the running test freely and instantly. To evaluate the feasibility of the simulator, the experiments on slip and adhesion coefficient are performed. Additionally the adhesion control and speed control of vehicle are tested with simulator. Experimental results show that the simulator can produce the driving characteristics similar to the vehicle system.

Implementation of The Fluid Circulation Blood Pressure Simulator (유체 순환 혈압 시뮬레이터의 구현)

  • Kim, C.H.;Lee, K.W.;Nam, K.G.;Jeon, G.R.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.768-776
    • /
    • 2007
  • A new type of the fluid circulation blood pressure simulator was proposed to enhance the blood pressure simulator used for the development and evaluation of automatic sphygmomanometers. Various pressure waveform of fluid flowing in the pipe was reproduced by operating the proportional control valve after applying a pressure on the fluid in pressurized oil tank. After that, appropriate fluid was supplied by operating the proportional control valve, which enabled to reproduce various pressure wave of the fluid flowing in the tube. To accomplish this work, the mathematical model was carefully reviewed in cooperating with the proposed simulator. After modeling the driving signal as input signal and the pressure in internal tube as output signal, the simulation on system parameters such as internal volume, cross-section of orifice and supply pressure, which are sensitive to dynamic characteristic of system, was accomplished. System parameters affecting the dynamic characteristic were analyzed in the frequency bandwidth and also reflected to the design of the plant. The performance evaluator of fluid dynamic characteristic using proportional control signal was fabricated on the basis of obtained simulation result. An experimental apparatus was set-up and measurements on the dynamic characteristic, nonlinearity, and rising and falling response was carried out to verify the characteristic of the fluid dynamic model. Controller was designed and thereafter, simulation was performed to control the output signal with respect to the reference input in the fluid dynamic model using the proposed proportional control valve. Hybrid controller combined with an proportional controller and feed-forward controller was fabricated after applying a disturbance observer to the control plant. Comparison of the simulations between the conventional proportional controller and the proposed hybrid simulator indicated that even though the former showed good control performance.

Development of Hardware Simulator for PMSG Wind Power System (영구자석동기발전기 풍력시스템의 하드웨어 시뮬레이터 개발)

  • Lee, Doo-Young;Yun, Dong-Jin;Jeong, Jong-Kyou;Yang, Seung-Chul;Han, Byung-Moon;Song, Seung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.951-958
    • /
    • 2008
  • This paper describes development of hardware simulator for the PMSG wind power system, which was designed considering wind characteristic, blade characteristic and blade inertia compensation. The simulator consists of three major parts, such as wind turbine model using induction motor, PMSG generator, converter-inverter set. and control system. The turbine simulator generates torque and speed signals for a specific wind turbine with respect to given wind speed. This torque and speed signals are scaled down to fit the input of 2kW PMSG. The PMSG-side converter operates to track the maximum power point, and the grid-side inverter controls the active and reactive power supplied to the grid. The operational feasibility was verified by computer simulations with PSCAD/EMTDC, and the implementation feasibility was confirmed through experimental works with a hardware set-up.

A Study on Frequency Simulator Design for Load Following Test of Generator (발전기 부하추종성 시험용 주파수 Simulator 설계에 관한 연구)

  • Kwak, Wol-Hwan;Lee, Gang-Wan;Oh, Chang-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.138-142
    • /
    • 2004
  • Recently over dropped frequencies of power system were recorded when power system was unbalanced between generation and demand. Therefore load following characteristic analysis of thermal and combined cycle power plant generators is necessary for low frequency condition analysis of power system. Frequency simulator supplies simulated frequency to the online generator for prescribed goal. This simulator needs to minimize effects to power system and requires stability first. This paper introduces design and manufacturing case of frequency simulator for load following characteristic analysis of generators.

  • PDF

Simulator for DC Power Supply System in Electric Railway (전기철도의 DC급전시스템 시뮬레이터)

  • 정상기;홍재승
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.720-726
    • /
    • 2000
  • The advance of traction motor control technology and the complexity of the traction power supply system makes the simulation essential in determining the dimension of the traction power supply system. The conventional method, use of the simplified and/or empirical equations, becomes inadequate in optimization of the design. The simulator presented in this paper is a numerical time based simulator running on a PC. The input to the simulator includes the track data, the train characteristic, network data and operating data. Basically the simulator conducts train running simulation and loadflow study repeatedly. The principle algorithms and its output is discussed in the paper.

  • PDF

An Analysis of the ESD Protection Characteristic of Chip Varistors Using a Distributed Circuit (분산회로를 이용한 칩 바리스터의 ESD 보호 특성에 대한 분석)

  • Hong Sung-Mo;Lee Jong-Geun;Chung Duck-Jin;Kim Ju-Min
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.12
    • /
    • pp.589-595
    • /
    • 2004
  • The ESD protection characteristic of chip varistors on a circuit board can not be analyzed by using a conventional circuit simulator due to its microwave characteristic. Thus, by employing Agilent's microwave circuit simulator ADS, we showed that the ESD Protection characteristic or chip varistors can be investigated. order to got more precise simulation results, a chip varistor model was extracted from the electrical characteristic of a TDK's chip varistor and the distributed circuit based pattern was designed as the ESD propagation path. The simulation results showed that the ESD protection characteristic of a chip varistors can be improved drastically by reducing the ESD propagation path.

The study of mechanical human respiratory simulator via characteristic test of motor and proportional valve (모터와 비례제어 밸브의 특성실험을 통한 기계적 호흡 모사장치연구)

  • Lee, M.K.;Lee, T.S.;Chi, S.H.;Oh, S.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.492-495
    • /
    • 2008
  • As the obesity patients increase recently, breath disease such an OSA(obstructive sleep apnea) is also increasing. When the breath disease occurs, the risk comes to be high. Dependence degree the PAP(positive airway pressure) is also coming to be high. The mechanical simulator is composed cylinder, valve, ball screw and the motor that they correspond to the lung and airway, the diaphragm of the human. In order to confirm the characteristic of the motor and the valve, it accomplished an test. The simulator traces breath pattern against the normal breath and the OSA.

  • PDF

A Study on the Development of Emergency Evacuation Simulator Considering the Characteristic of the Behavior Pattern in Crowding (대피장애 행동특성을 반영한 비상사태 피난 시뮬레이터 개발 연구)

  • Li, Song-Jun;Lee, Sang-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.5
    • /
    • pp.1319-1327
    • /
    • 2008
  • There has been a lot of research on the creation of emergency evacuation simulators for analyzing the evacuation behaviors. However, it is remarkable that there are very few research on the characteristic of the behavior pattern in crowing, especially the evacuation time delay caused by the collisions and falling-downs, etc. In addition, it is necessary to point out the lack of the research on specifying the location where the collisions and the falling-downs take places. This research aims at creating an emergency evacuation simulator which takes the characteristic of the behavior pattern in crowing - collisions, falling downs, etc - into account. We are also hoping that it will be possible to provide more accurate and useful data ffr emergency evacuation system design through using this simulator.

The Study of Mechanical Simulation for Human Respiratory System (인체 호흡 모사를 위한 기계적 장치 연구)

  • Chi, S.H.;Lee, M.K.;Lee, T.S.;Choi, Y.S.;Oh, S.K.
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.4
    • /
    • pp.323-328
    • /
    • 2008
  • A patient with respiratory disorders such as a sleep apnea is increasing as the obese patient increase on the modern society. Positive Airway Pressure (PAP) devices are used in curing patient with respiratory disorders and turn out to be efficacious for patients of 75%. However, these devices are required for evaluating their performance to improve their performance by the mechanical breathing simulator. Recently, the mechanical breathing simulator was studied by the real time feedback control. However, the mechanical breathing simulator by an open loop control was specially required in order to analyze the effect of flow rate and pressure after operating the breathing auxiliary devices. Therefore the aims of this study were to make the mechanical breathing simulator by a piston motion and a valve function from the characteristic test of valve and motor, and to duplicate the flow rate and pressure profiles of some breathing patterns: normal and three disorder patterns. The mechanical simulator is composed cylinder, valve, ball screw and the motor. Also, the characteristic test of the motor and the valve were accomplished in order to define the relationship between the characteristics of simulator and the breathing profiles. Then, the flow rate and pressure profile of human breathing patterns were duplicated by the control of motor and valve. The result showed that the simulator reasonably duplicated the characteristics of human patterns: normal, obstructive sleep apnea (OSA), mild hypopnea with snore and mouth expiration patterns. However, we need to improve this simulator in detail and to validate this method for other patterns.