• Title/Summary/Keyword: Characteristic Equation

Search Result 949, Processing Time 0.025 seconds

Numerical Modeling of One-Dimensional Longitudinal Dispersion Equation using Eulerian-Lagrangian Method (Eulerian-Lagrangian 방법을 이용한 1차원 종확산방정식의 수치모형)

  • 서일원;김대근
    • Water for future
    • /
    • v.27 no.2
    • /
    • pp.155-166
    • /
    • 1994
  • Various Eulerian-Lagrangian numerical models for the one-dimensional longitudinal dispersion equation are studied comparatively. In the model studied, the transport equation is decoupled into two component parts by the operator-splitting approach ; one part governing adveciton and the other dispersion. The advection equation has been solved using the method of characteristics following fluid particles along the characteristic line and the results are interpolated onto an Eulerian grid on which the dispersion equation is solved by Crank-Nicholson type finite difference method. In solving the advection equation, various interpolation schemes are tested. Among those, Hermite interpolation polynomials are superior to Lagrange interpolation polynomials in reducing dissipation and dispersion errors in the simulation.

  • PDF

DEVELOPMENT OF INTERFACIAL AREA TRANSPORT EQUATION

  • ISHII MAMORU;KIM SEUNGJIN;KELLY JOSEPH
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.525-536
    • /
    • 2005
  • The interfacial area transport equation dynamically models the changes in interfacial structures along the flow field by mechanistically modeling the creation and destruction of dispersed phase. Hence, when employed in the numerical thermal-hydraulic system analysis codes, it eliminates artificial bifurcations stemming from the use of the static flow regime transition criteria. Accounting for the substantial differences in the transport mechanism for various sizes of bubbles, the transport equation is formulated for two characteristic groups of bubbles. The group 1 equation describes the transport of small-dispersed bubbles, whereas the group 2 equation describes the transport of large cap, slug or chum-turbulent bubbles. To evaluate the feasibility and reliability of interfacial area transport equation available at present, it is benchmarked by an extensive database established in various two-phase flow configurations spanning from bubbly to chum-turbulent flow regimes. The geometrical effect in interfacial area transport is examined by the data acquired in vertical fir-water two-phase flow through round pipes of various sizes and a confined flow duct, and by those acquired In vertical co-current downward air-water two-phase flow through round pipes of two different sizes.

Soil-water Characteristic Curve Assessment Using a Reference State Concept (비교상태 개념을 이용한 흙-수분 특성곡선 평가)

  • 성상규;이인모;이형주;조국환
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.27-35
    • /
    • 2004
  • The goal of this study is to investigate the feasibility of the reference state approach in determining the generalized soil-water characteristic curve that is essential fur characterization of unsaturated soil behavior. The soil-water characteristic curves are obtained from a number of specimens of fine-grained residual soils compacted with different void ratios. Based on the experimental test results, the feasibility of using the liquid limit state as the reference state for predicting the soil-water characteristic curve is verified. Finally, through the regression analysis of experimental data using the equation of Fredlund and Xing (1994), a reliable method is proposed to predict the generalized soil-water characteristic curve of fine-grained residual soils using the liquid limit state as the reference state.

Use of a Transformed Diode Equation for Characterization of the Ideality Factor and Series Resistance of Crystalline Silicon Solar Cells Based on Light I-V Curves (Light I-V 곡선을 이용한 결정질 태양전지의 이상계수와 직렬 저항 특성 분석)

  • Jeong, Sujeong;Kim, Soo Min;Kang, Yoonmook;Lee, Hae-seok;Kim, Donghwan
    • Korean Journal of Materials Research
    • /
    • v.26 no.8
    • /
    • pp.422-426
    • /
    • 2016
  • With the increase in installed solar energy capacity, comparison and analysis of the physical property values of solar cells are becoming increasingly important for production. Therefore, research on determining the physical characteristic values of solar cells is being actively pursued. In this study, a diode equation, which is commonly used to describe the I-V behavior and determine the electrical characteristic values of solar cells, was applied. Using this method, it is possible to determine the diode ideality factor (n) and series resistance ($R_s$) based on light I-V measurements. Thus, using a commercial screen-printed solar cell and an interdigitated back-contact solar cell, we determined the ideality factor (n) and series resistance ($R_s$) with a modified diode equation method for the light I-V curves. We also used the sun-shade method to determine the ideality factor (n) and series resistance ($R_s$) of the samples. The values determined using the two methods were similar. However, given the error in the sun-shade method, the diode equation is considered more useful than the sun-shade method for analyzing the electrical characteristics because it determines the ideality factor (n) and series resistance ($R_s$) based on the light I-V curves.

Simulation of Two-Phase Fluid Flow in a Single Fracture Surrounding an Underground LPG Storage Cavern: I. Numerical Model Development and Parallel Plate Test (지하 LPG 저장공동에 인접한 단일절리에서의 이상유체거동해석: I. 수치모형의 개발 및 모형실험)

  • Han, Il-Yeong;Seo, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.5
    • /
    • pp.439-448
    • /
    • 2001
  • A two-dimensional finite difference numerical model was developed in order to simulate two-phase fluid flow in a single fracture. In the model, variation of viscosity with pressure and that of relative permeability with water saturation can be treated. For the numerical solution, IMPES method was used, from which the pressure and the saturation of water and gas were computed one by one. Seven cases of model test using parallel plates for a single fracture were performed in order to obtain the characteristic equation of relative permeability which would be used in the numerical model. it was difficult to match the characteristic curves of relative permeability from the model tests with the existing emperical equations, consequently a logistic equation was proposed. As the equation is composed of the parameters involving aperture size, it can be applied to any fracture.

  • PDF

Mechanical Splicing Characteristic of the Threaded Bar according to the Contact Conditions of the Transverse Rib (마디접촉조건에 따른 나사철근의 기계식 이음 특성)

  • Kim, J.M.;Choi, S.W.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.28 no.3
    • /
    • pp.145-153
    • /
    • 2019
  • The objective of this study is to analyze the mechanical splicing characteristic of the threaded bar according to the contact conditions of the transverse rib. In order to consider the contact conditions of the rib, selection of the main variables including the gap of the core diameter ($l_c$), rib angle (${\theta}$), and the number of contacts ($C_N$) of transverse rib was done. So as to analyze the splicing characteristic of the D51 threaded bar, a finite element (FE) simulation of the tensile test was conducted using the designed D51 threaded bar and coupler. Through FE simulation results, it was verified that the mechanical slicing characteristics varied based on the main design variables ($l_c$, ${\theta}$, and $C_N$). It was further confirmed that it was important to determine the $C_N$ in consideration of $l_c$. Additionally, the tensile test results of the D25 and D51 threaded bar combined with the couplers were similar to FE simulation results. Furthermore, to quantitatively evaluate FE simulation and test results, the calculation equation for the contacted projection area ratio (R) of the transverse rib was proposed. To secure a mechanical splicing joint of the threaded bar, it was established that the R calculated using the proposed equation had to be greater or equal to 40%.

Optimum Welding Position between Shell and Cylinder based on SEA (SEA를 이용한 셸과 실린더의 최적 용접 조건)

  • 이장우;양보석;안병하
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.5
    • /
    • pp.370-376
    • /
    • 2004
  • The overall aim of this paper is to determine coupling loss factor of welding point between shell and cylinder using loss factor and structural loss factor. For this purpose, two kinds of loss factor were adopted. One is loss factor of each sub structure, another is structural loss factor based on the complex welded or assembled structure. Using these two parameters, it ispossible to derive the coupling loss factor which represent characteristic condition of SEA theory. Coupling loss factor of conjunction in complex structure was expressed as power balance equation. The derived equation for a coupling loss factor has been simplified on the assumption of one way (uni-directional) power flow between multi-sub structures. Using these conditions, it is possible to find the equation of coupling loss factor expressed as above two loss factors. To check the effectiveness of above equation, this paper used two-stage application. The first approach was application between simple cylinder and shell. The next was adopted rotary compressor. Rotary compressor has three main conjunctions between shell and internal vibration part. This equation was applied to find out the optimum welding point with respect to reduce the noise propagation. It shows the effective tool to evaluate the coupling loss factor in complex structure

Exact solution of a thick walled functionally graded piezoelectric cylinder under mechanical, thermal and electrical loads in the magnetic field

  • Arefi, M.;Rahimi, G.H.;Khoshgoftar, M.J.
    • Smart Structures and Systems
    • /
    • v.9 no.5
    • /
    • pp.427-439
    • /
    • 2012
  • The present paper deals with the analytical solution of a functionally graded piezoelectric (FGP) cylinder in the magnetic field under mechanical, thermal and electrical loads. All mechanical, thermal and electrical properties except Poisson ratio can be varied continuously and gradually along the thickness direction of the cylinder based on a power function. The cylinder is assumed to be axisymmetric. Steady state heat transfer equation is solved by considering the appropriate boundary conditions. Using Maxwell electro dynamic equation and assumed magnetic field along the axis of the cylinder, Lorentz's force due to magnetic field is evaluated for non homogenous state. This force can be employed as a body force in the equilibrium equation. Equilibrium and Maxwell equations are two fundamental equations for analysis of the problem. Comprehensive solution of Maxwell equation is considered in the present paper for general states of non homogeneity. Solution of governing equations may be obtained using solution of the characteristic equation of the system. Achieved results indicate that with increasing the non homogenous index, different mechanical and electrical components present different behaviors along the thickness direction. FGP can control the distribution of the mechanical and electrical components in various structures with good precision. For intelligent properties of functionally graded piezoelectric materials, these materials can be used as an actuator, sensor or a component of piezo motor in electromechanical systems.

Study on Optimum Welding Position between Shell and Cylinder based on SEA. (SEA를 이용한 쉘과 실린더의 최적 용접 조건에 관한 연구)

  • 안병하;이장우;양보석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.969-972
    • /
    • 2003
  • The overall aim of this paper is to determine coupling loss factor of welding point between shell and cylinder using loss factor and structural loss factor. For this purpose, two kinds of loss factor were adopted. One is loss factor of each sub structure, another is structural loss factor based on the complex welded or assembled structure. Using these two parameters, it is possible to derive the coupling loss factor which represent characteristic condition of SEA theory. Coupling loss factor of conjunction in complex structure was expressed as power balance equation. The derived equation for a coupling loss factor has been simplified on the assumption of one way(nl- directional) power flow between multi-sub structures. Using these conditions, it is possible to find the equation of coupling loss factor expressed as above two loss factors. To check the effectiveness of above equation, this paper used two stage application. The first approach was application between simple cylinder and shell. The next was adopted rotary compressor. Rotary compressor has three main conjunctions between shell and internal vibration part. This equation was applied to find out the optimum welding Point with respect to reduce the noise propagation. It shows the effective tool to evaluate the coupling loss factor in complex structure

  • PDF

Improvement of the Spectral Reconstruction Process with Pretreatment of Matrix in Convex Optimization

  • Jiang, Zheng-shuai;Zhao, Xin-yang;Huang, Wei;Yang, Tao
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.322-328
    • /
    • 2021
  • In this paper, a pretreatment method for a matrix in convex optimization is proposed to optimize the spectral reconstruction process of a disordered dispersion spectrometer. Unlike the reconstruction process of traditional spectrometers using Fourier transforms, the reconstruction process of disordered dispersion spectrometers involves solving a large-scale matrix equation. However, since the matrices in the matrix equation are obtained through measurement, they contain uncertainties due to out of band signals, background noise, rounding errors, temperature variations and so on. It is difficult to solve such a matrix equation by using ordinary nonstationary iterative methods, owing to instability problems. Although the smoothing Tikhonov regularization approach has the ability to approximatively solve the matrix equation and reconstruct most simple spectral shapes, it still suffers the limitations of reconstructing complex and irregular spectral shapes that are commonly used to distinguish different elements of detected targets with mixed substances by characteristic spectral peaks. Therefore, we propose a special pretreatment method for a matrix in convex optimization, which has been proved to be useful for reducing the condition number of matrices in the equation. In comparison with the reconstructed spectra gotten by the previous ordinary iterative method, the spectra obtained by the pretreatment method show obvious accuracy.