• Title/Summary/Keyword: Characteristic Curves

Search Result 665, Processing Time 0.038 seconds

Usefulness of the SAFARI score for predicting convulsive seizure in patients with aneurysmal subarachnoid hemorrhage (비외상성 동맥류성지주막하출혈 환자에서 SAFARI 점수를 이용한 경련 발생 예측의 유용성)

  • Baik, Seung Jun;Hong, Dae Young;Kim, Sin Young;Kim, Jong Won;Park, Sang O;Lee, Kyeong Ryong;Baek, Kwang Je
    • Journal of The Korean Society of Emergency Medicine
    • /
    • v.29 no.5
    • /
    • pp.449-454
    • /
    • 2018
  • Objective: The SAFARI score was introduced to assess the risk of convulsive seizure during admission for aneurysmal subarachnoid hemorrhage in 2017. This study was conducted to determine whether the SAFARI score derived from the afore-mentioned study could be applied to patients with aneurysmal subarachnoid hemorrhage in Korea. Methods: We conducted a retrospective study of patients who were diagnosed with aneurysmal subarachnoid hemorrhage from March 2013 to October 2017. Patients' age, sex, blood pressure, pulse rate, body temperature, Glasgow-Coma Scale, Hunt-Hess scale, modified Fisher grade, size of ruptured aneurysm, surgery type, transfusion, and SAFARI score were compared between the seizure and non-seizure groups. The area under the receiver operator characteristic curves was calculated to evaluate the predictive ability for seizure during admission. Logistic regression analysis was used to analyze predictive factors for seizure during admission. Results: A total of 220 patients were included. Ninety-seven (44.1%) were male and 123 (55.9%) were female. The mean age of the patients was 65.8 years old (range, 56-75). The area under the curve of the SAFARI score for predicting seizure was 0.813. The SAFARI score was the only significant predictor of seizure during admission, while other factors were not statistically significant upon logistic regression analysis. Conclusion: The SAFARI score could be used for predicting seizure during admission in patients with aneurysmal subarachnoid hemorrhage.

The Korean Repeatable Battery for the Assessment of Neuropsychological Status-Update : Psychiatric and Neurosurgery Patient Sample Validity

  • Park, Jong-Ok;Koo, Bon-Hoon;Kim, Ji-Yean;Bai, Dai-Seg;Chang, Mun-Seon;Kim, Oh-Lyong
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.1
    • /
    • pp.125-135
    • /
    • 2021
  • Objective : This study aimed to validate the Korean version of the Repeatable Battery for the Assessment of Neuropsychological Status Update (K-RBANS). Methods : We performed a retrospective analysis of 283 psychiatric and neurosurgery patients. To investigate the convergent validity of the K-RBANS, correlation analyses were performed for other intelligence and neuropsychological test results. Confirmatory factor analysis was used to test a series of alternative plausible models of the K-RBANS. To analyze the various capabilities of the K-RBANS, we compared the area under the receiver operating characteristic (ROC) curves (AUC). Results : Significant correlations were observed, confirming the convergent validity of the K-RBANS among the Total Scale Index (TSI) and indices of the K-RBANS and indices of intelligence (r=0.47-0.81; p<0.001) and other neuropsychological tests at moderate and above significance (r=0.41-0.63; p<0.001). Additionally, the results testing the construct validity of the K-RBANS showed that the second-order factor structure model (model 2, similar to an original factor structure of RBANS), which includes a first-order factor comprising five index scores (immediate memory, visuospatial capacity, language, attention, delayed memory) and one higher-order factor (TSI), was statistically acceptable. The comparative fit index (CFI) (CFI, 0.949) values and the goodness of fit index (GFI) (GFI, 0.942) values higher than 0.90 indicated an excellent fit. The root mean squared error of approximation (RMSEA) (RMSEA, 0.082) was considered an acceptable fit. Additionally, the factor structure of model 2 was found to be better and more valid than the other model in χ2 values (Δχ2=7.69, p<0.05). In the ROC analysis, the AUCs of the TSI and five indices were 0.716-0.837, and the AUC of TSI (AUC, 0.837; 95% confidence interval, 0.760-0.896) was higher than the AUCs of the other indices. The sensitivity and specificity of TSI were 77.66% and 78.12%, respectively. Conclusion : The overall results of this study suggest that the K-RBANS may be used as a valid tool for the brief screening of neuropsychological patients in Korea.

A Study on Verification of Equivalence and Effectiveness of Non-Pharmacologic Dementia Prevention and Early Detection Contents : Non-Randomly Equivalent Design

  • Jeong, Hyun-Seok;Kim, Oh-Lyong;Koo, Bon-Hoon;Kim, Ki-Hyun;Kim, Gi-Hwan;Bai, Dai-Seg;Kim, Ji-Yean;Chang, Mun-Seon;Kim, Hye-Geum
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.2
    • /
    • pp.315-324
    • /
    • 2022
  • Objective : The aim of this study was to verify the equivalence and effectiveness of the tablet-administered Korean Repeatable Battery for the Assessment of Neuropsychological Status (K-RBANS) for the prevention and early detection of dementia. Methods : Data from 88 psychiatry and neurology patient samples were examined to evaluate the equivalence between tablet and paper administrations of the K-RBANS using a non-randomly equivalent group design. We calculated the prediction scores of the tablet-administered K-RBANS based on demographics and covariate-test scores for focal tests using norm samples and tested format effects. In addition, we compared the receiver operating characteristic curves to confirm the effectiveness of the K-RBANS for preventing and detecting dementia. Results : In the analysis of raw scores, line orientation showed a significant difference (t=-2.94, p<0.001), and subtests showed small to large effect sizes (0.04-0.86) between paper- and tablet-administered K-RBANS. To investigate the format effect, we compared the predicted scaled scores of the tablet sample to the scaled scores of the norm sample. Consequently, a small effect size (d≤0.20) was observed in most of the subtests, except word list and story recall, which showed a medium effect size (d=0.21), while picture naming and subtests of delayed memory showed significant differences in the one-sample t-test. In addition, the area under the curve of the total scale index (TSI) (0.827; 95% confidence interval, 0.738-0.916) was higher than that of the five indices, ranging from 0.688 to 0.820. The sensitivity and specificity of TSI were 80% and 76%, respectively. Conclusion : The overall results of this study suggest that the tablet-administered K-RBANS showed significant equivalence to the norm sample, although some subtests showed format effects, and it may be used as a valid tool for the brief screening of patients with neuropsychological disorders in Korea.

Analysis of Hydraulic behavior in Unsaturated Soil Slope for the Boundary Condition and Hysteresis of SWCC (경계 조건과 불포화 함수 특성 곡선의 이력에 따른 불포화 토사 사면의 수리적 거동 분석)

  • Lee, Eo-Ryeong;Park, Hyun-Su;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.1
    • /
    • pp.15-25
    • /
    • 2023
  • Recent weather changes have led to an increase in heavy rainfall resulting in frequent large-scale slope failures. To minimize damage to life and property, a measurement system is used in slope failure warning systems. However, understanding the slope failure behavior is difficult as the measurement system only measures a specific point. Therefore, numerical analysis must be p erformed with the measurement system. The soil water characteristic curve (SWCC) drying curve and boundary conditions that consider evapotranspiration and precipitation have been applied to numerical analysis, but the hysteresis of SWCC affects the numerical analysis results. To address this, a new evapotranspiration calculation method is proposed and applied to boundary conditions, and the measurement data are compared with the results of the numerical analysis. This method takes into account the different infiltration behaviors on evapotranspiration according to the drying and wetting curves of the SWCC, and allows for a more rational prediction of water movement on unsaturated slopes.

Preoperative Prediction for Early Recurrence Can Be as Accurate as Postoperative Assessment in Single Hepatocellular Carcinoma Patients

  • Dong Ik Cha;Kyung Mi Jang;Seong Hyun Kim;Young Kon Kim;Honsoul Kim;Soo Hyun Ahn
    • Korean Journal of Radiology
    • /
    • v.21 no.4
    • /
    • pp.402-412
    • /
    • 2020
  • Objective: To evaluate the performance of predicting early recurrence using preoperative factors only in comparison with using both pre-/postoperative factors. Materials and Methods: We retrospectively reviewed 549 patients who had undergone curative resection for single hepatcellular carcinoma (HCC) within Milan criteria. Multivariable analysis was performed to identify pre-/postoperative high-risk factors of early recurrence after hepatic resection for HCC. Two prediction models for early HCC recurrence determined by stepwise variable selection methods based on Akaike information criterion were built, either based on preoperative factors alone or both pre-/postoperative factors. Area under the curve (AUC) for each receiver operating characteristic curve of the two models was calculated, and the two curves were compared for non-inferiority testing. The predictive models of early HCC recurrence were internally validated by bootstrap resampling method. Results: Multivariable analysis on preoperative factors alone identified aspartate aminotransferase/platelet ratio index (OR, 1.632; 95% CI, 1.056-2.522; p = 0.027), tumor size (OR, 1.025; 95% CI, 0.002-1.049; p = 0.031), arterial rim enhancement of the tumor (OR, 2.350; 95% CI, 1.297-4.260; p = 0.005), and presence of nonhypervascular hepatobiliary hypointense nodules (OR, 1.983; 95% CI, 1.049-3.750; p = 0.035) on gadoxetic acid-enhanced magnetic resonance imaging as significant factors. After adding postoperative histopathologic factors, presence of microvascular invasion (OR, 1.868; 95% CI, 1.155-3.022; p = 0.011) became an additional significant factor, while tumor size became insignificant (p = 0.119). Comparison of the AUCs of the two models showed that the prediction model built on preoperative factors alone was not inferior to that including both pre-/postoperative factors {AUC for preoperative factors only, 0.673 (95% confidence interval [CI], 0.623-0.723) vs. AUC after adding postoperative factors, 0.691 (95% CI, 0.639-0.744); p = 0.0013}. Bootstrap resampling method showed that both the models were valid. Conclusion: Risk stratification solely based on preoperative imaging and laboratory factors was not inferior to that based on postoperative histopathologic risk factors in predicting early recurrence after curative resection in within Milan criteria single HCC patients.

Prediction of Patient Management in COVID-19 Using Deep Learning-Based Fully Automated Extraction of Cardiothoracic CT Metrics and Laboratory Findings

  • Thomas Weikert;Saikiran Rapaka;Sasa Grbic;Thomas Re;Shikha Chaganti;David J. Winkel;Constantin Anastasopoulos;Tilo Niemann;Benedikt J. Wiggli;Jens Bremerich;Raphael Twerenbold;Gregor Sommer;Dorin Comaniciu;Alexander W. Sauter
    • Korean Journal of Radiology
    • /
    • v.22 no.6
    • /
    • pp.994-1004
    • /
    • 2021
  • Objective: To extract pulmonary and cardiovascular metrics from chest CTs of patients with coronavirus disease 2019 (COVID-19) using a fully automated deep learning-based approach and assess their potential to predict patient management. Materials and Methods: All initial chest CTs of patients who tested positive for severe acute respiratory syndrome coronavirus 2 at our emergency department between March 25 and April 25, 2020, were identified (n = 120). Three patient management groups were defined: group 1 (outpatient), group 2 (general ward), and group 3 (intensive care unit [ICU]). Multiple pulmonary and cardiovascular metrics were extracted from the chest CT images using deep learning. Additionally, six laboratory findings indicating inflammation and cellular damage were considered. Differences in CT metrics, laboratory findings, and demographics between the patient management groups were assessed. The potential of these parameters to predict patients' needs for intensive care (yes/no) was analyzed using logistic regression and receiver operating characteristic curves. Internal and external validity were assessed using 109 independent chest CT scans. Results: While demographic parameters alone (sex and age) were not sufficient to predict ICU management status, both CT metrics alone (including both pulmonary and cardiovascular metrics; area under the curve [AUC] = 0.88; 95% confidence interval [CI] = 0.79-0.97) and laboratory findings alone (C-reactive protein, lactate dehydrogenase, white blood cell count, and albumin; AUC = 0.86; 95% CI = 0.77-0.94) were good classifiers. Excellent performance was achieved by a combination of demographic parameters, CT metrics, and laboratory findings (AUC = 0.91; 95% CI = 0.85-0.98). Application of a model that combined both pulmonary CT metrics and demographic parameters on a dataset from another hospital indicated its external validity (AUC = 0.77; 95% CI = 0.66-0.88). Conclusion: Chest CT of patients with COVID-19 contains valuable information that can be accessed using automated image analysis. These metrics are useful for the prediction of patient management.

Two-Dimensional Shear Wave Elastography Predicts Liver Fibrosis in Jaundiced Infants with Suspected Biliary Atresia: A Prospective Study

  • Huadong Chen;Luyao Zhou;Bing Liao;Qinghua Cao;Hong Jiang;Wenying Zhou;Guotao Wang;Xiaoyan Xie
    • Korean Journal of Radiology
    • /
    • v.22 no.6
    • /
    • pp.959-969
    • /
    • 2021
  • Objective: This study aimed to evaluate the role of preoperative two-dimensional (2D) shear wave elastography (SWE) in assessing the stages of liver fibrosis in patients with suspected biliary atresia (BA) and compared its diagnostic performance with those of serum fibrosis biomarkers. Materials and Methods: This study was approved by the ethical committee, and written informed parental consent was obtained. Two hundred and sixteen patients were prospectively enrolled between January 2012 and October 2018. The 2D SWE measurements of 69 patients have been previously reported. 2D SWE measurements, serum fibrosis biomarkers, including fibrotic markers and biochemical test results, and liver histology parameters were obtained. 2D SWE values, serum biomarkers including, aspartate aminotransferase to platelet ratio index (APRi), and other serum fibrotic markers were correlated with the stages of liver fibrosis by METAVIR. Receiver operating characteristic (ROC) curves and area under the ROC (AUROC) curve analyses were used. Results: The correlation coefficient of 2D SWE value in correlation with the stages of liver fibrosis was 0.789 (p < 0.001). The cut-off values of 2D SWE were calculated as 9.1 kPa for F1, 11.6 kPa for F2, 13.0 kPa for F3, and 15.7 kPa for F4. The AUROCs of 2D SWE in the determination of the stages of liver fibrosis ranged from 0.869 to 0.941. The sensitivity and negative predictive value of 2D SWE in the diagnosis of ≥ F3 was 93.4% and 96.0%, respectively. The diagnostic performance of 2D SWE was superior to that of APRi and other serum fibrotic markers in predicting severe fibrosis and cirrhosis (all p < 0.005) and other serum biomarkers. Multivariate analysis showed that the 2D SWE value was the only statistically significant parameter for predicting liver fibrosis. Conclusion: 2D SWE is a more effective non-invasive tool for predicting the stage of liver fibrosis in patients with suspected BA, compared with serum fibrosis biomarkers.

Quantitative Ultrasound Radiofrequency Data Analysis for the Assessment of Hepatic Steatosis in Nonalcoholic Fatty Liver Disease Using Magnetic Resonance Imaging Proton Density Fat Fraction as the Reference Standard

  • Sun Kyung Jeon;Jeong Min Lee;Ijin Joo;Sae-Jin Park
    • Korean Journal of Radiology
    • /
    • v.22 no.7
    • /
    • pp.1077-1086
    • /
    • 2021
  • Objective: To investigate the diagnostic performance of quantitative ultrasound (US) parameters for the assessment of hepatic steatosis in patients with nonalcoholic fatty liver disease (NAFLD) using magnetic resonance imaging proton density fat fraction (MRI-PDFF) as the reference standard. Materials and Methods: In this single-center prospective study, 120 patients with clinically suspected NAFLD were enrolled between March 2019 and January 2020. The participants underwent US examination for radiofrequency (RF) data acquisition and chemical shift-encoded liver MRI for PDFF measurement. Using the RF data analysis, the attenuation coefficient (AC) based on tissue attenuation imaging (TAI) (AC-TAI) and scatter-distribution coefficient (SC) based on tissue scatter-distribution imaging (TSI) (SC-TSI) were measured. The correlations between the quantitative US parameters (AC and SC) and MRI-PDFF were evaluated using Pearson correlation coefficients. The diagnostic performance of AC-TAI and SC-TSI for detecting hepatic fat contents of ≥ 5% (MRI-PDFF ≥ 5%) and ≥ 10% (MRI-PDFF ≥ 10%) were assessed using receiver operating characteristic (ROC) analysis. The significant clinical or imaging factors associated with AC and SC were analyzed using linear regression analysis. Results: The participants were classified based on MRI-PDFF: < 5% (n = 38), 5-10% (n = 23), and ≥ 10% (n = 59). AC-TAI and SC-TSI were significantly correlated with MRI-PDFF (r = 0.659 and 0.727, p < 0.001 for both). For detecting hepatic fat contents of ≥ 5% and ≥ 10%, the areas under the ROC curves of AC-TAI were 0.861 (95% confidence interval [CI]: 0.786-0.918) and 0.835 (95% CI: 0.757-0.897), and those of SC-TSI were 0.964 (95% CI: 0.913-0.989) and 0.935 (95% CI: 0.875-0.972), respectively. Multivariable linear regression analysis showed that MRI-PDFF was an independent determinant of AC-TAI and SC-TSI. Conclusion: AC-TAI and SC-TSI derived from quantitative US RF data analysis yielded a good correlation with MRI-PDFF and provided good performance for detecting hepatic steatosis and assessing its severity in NAFLD.

Added Value of Chemical Exchange-Dependent Saturation Transfer MRI for the Diagnosis of Dementia

  • Jang-Hoon Oh;Bo Guem Choi;Hak Young Rhee;Jin San Lee;Kyung Mi Lee;Soonchan Park;Ah Rang Cho;Chang-Woo Ryu;Key Chung Park;Eui Jong Kim;Geon-Ho Jahng
    • Korean Journal of Radiology
    • /
    • v.22 no.5
    • /
    • pp.770-781
    • /
    • 2021
  • Objective: Chemical exchange-dependent saturation transfer (CEST) MRI is sensitive for detecting solid-like proteins and may detect changes in the levels of mobile proteins and peptides in tissues. The objective of this study was to evaluate the characteristics of chemical exchange proton pools using the CEST MRI technique in patients with dementia. Materials and Methods: Our institutional review board approved this cross-sectional prospective study and informed consent was obtained from all participants. This study included 41 subjects (19 with dementia and 22 without dementia). Complete CEST data of the brain were obtained using a three-dimensional gradient and spin-echo sequence to map CEST indices, such as amide, amine, hydroxyl, and magnetization transfer ratio asymmetry (MTRasym) values, using six-pool Lorentzian fitting. Statistical analyses of CEST indices were performed to evaluate group comparisons, their correlations with gray matter volume (GMV) and Mini-Mental State Examination (MMSE) scores, and receiver operating characteristic (ROC) curves. Results: Amine signals (0.029 for non-dementia, 0.046 for dementia, p = 0.011 at hippocampus) and MTRasym values at 3 ppm (0.748 for non-dementia, 1.138 for dementia, p = 0.022 at hippocampus), and 3.5 ppm (0.463 for non-dementia, 0.875 for dementia, p = 0.029 at hippocampus) were significantly higher in the dementia group than in the non-dementia group. Most CEST indices were not significantly correlated with GMV; however, except amide, most indices were significantly correlated with the MMSE scores. The classification power of most CEST indices was lower than that of GMV but adding one of the CEST indices in GMV improved the classification between the subject groups. The largest improvement was seen in the MTRasym values at 2 ppm in the anterior cingulate (area under the ROC curve = 0.981), with a sensitivity of 100 and a specificity of 90.91. Conclusion: CEST MRI potentially allows noninvasive image alterations in the Alzheimer's disease brain without injecting isotopes for monitoring different disease states and may provide a new imaging biomarker in the future.

Texture Analysis of Three-Dimensional MRI Images May Differentiate Borderline and Malignant Epithelial Ovarian Tumors

  • Rongping Ye;Shuping Weng;Yueming Li;Chuan Yan;Jianwei Chen;Yuemin Zhu;Liting Wen
    • Korean Journal of Radiology
    • /
    • v.22 no.1
    • /
    • pp.106-117
    • /
    • 2021
  • Objective: To explore the value of magnetic resonance imaging (MRI)-based whole tumor texture analysis in differentiating borderline epithelial ovarian tumors (BEOTs) from FIGO stage I/II malignant epithelial ovarian tumors (MEOTs). Materials and Methods: A total of 88 patients with histopathologically confirmed ovarian epithelial tumors after surgical resection, including 30 BEOT and 58 MEOT patients, were divided into a training group (n = 62) and a test group (n = 26). The clinical and conventional MRI features were retrospectively reviewed. The texture features of tumors, based on T2-weighted imaging, diffusion-weighted imaging, and contrast-enhanced T1-weighted imaging, were extracted using MaZda software and the three top weighted texture features were selected by using the Random Forest algorithm. A non-texture logistic regression model in the training group was built to include those clinical and conventional MRI variables with p value < 0.10. Subsequently, a combined model integrating non-texture information and texture features was built for the training group. The model, evaluated using patients in the training group, was then applied to patients in the test group. Finally, receiver operating characteristic (ROC) curves were used to assess the diagnostic performance of the models. Results: The combined model showed superior performance in categorizing BEOTs and MEOTs (sensitivity, 92.5%; specificity, 86.4%; accuracy, 90.3%; area under the ROC curve [AUC], 0.962) than the non-texture model (sensitivity, 78.3%; specificity, 84.6%; accuracy, 82.3%; AUC, 0.818). The AUCs were statistically different (p value = 0.038). In the test group, the AUCs, sensitivity, specificity, and accuracy were 0.840, 73.3%, 90.1%, and 80.8% when the non-texture model was used and 0.896, 75.0%, 94.0%, and 88.5% when the combined model was used. Conclusion: MRI-based texture features combined with clinical and conventional MRI features may assist in differentitating between BEOT and FIGO stage I/II MEOT patients.