• 제목/요약/키워드: Character Detection

검색결과 249건 처리시간 0.024초

피치 검출과 퍼지화 패턴을 이용한 숫자음 화자 인식에 관한 연구 (A Study on Number sounds Speaker recognition using the Pitch detection and the Fuzzified pattern)

  • 김연숙;김희주;김경재
    • 한국컴퓨터정보학회논문지
    • /
    • 제8권3호
    • /
    • pp.73-79
    • /
    • 2003
  • 본 논문에서는 피치 검출과 퍼지화 패턴 매칭을 포함하는 화자 인식 알고리즘을 제안한다. 음의 개성을 표현하는 피치를 이용한 피치 패턴을 사용하고 음성의 파라미터는 2진화 스펙트럼을 사용한다. 비선형적인 발성 시간에 따른 시간 변동의 폭을 모두 포함할 수 있도록 음성 신호의 애매성을 보완할 수 있는 퍼지의 소속 함수를 이용하여 표준 패턴을 작성하고 퍼지화 패턴 매칭을 이용하여 인식을 수행한다.

  • PDF

PVPF방법과 퍼지 이론을 이용한 한국어, 영어 및 일본어 화자 인식에 관한 연구 (A Study on Korean, English and Japanese Speaker Recognitions Using the Peak and Valley Pitch Detection and the Fuzzy Theory)

  • 김연숙
    • 한국정보처리학회논문지
    • /
    • 제6권2호
    • /
    • pp.522-533
    • /
    • 1999
  • 본 논문에서는 피지 파라미터와 퍼지 추론을 포함한 화자 인식 알고리즘을 제안한다. 시간영역에서 검출 알고리즘의 장점인 잡음에 강인함을 가진 PVPF 법을 제안하여 피치를 검출한다. 또한 화자 인식에서 특징량들의 애매성을 표현하고 인식하는 방법으로 퍼지 이론을 도입하였다. PVPF는 음의 시간적인 특징을 이용하여 국부적으로 봉우리와 골을 이룬다는 것을 이용한 계산량이 적고 잡음에 강인한 피치 검출법이다.

  • PDF

딥러닝 알고리즘을 이용한 문서의 인코딩 및 언어 판별 (Encoding and language detection of text document using Deep learning algorithm)

  • 김선범;배준우;박희진
    • 한국차세대컴퓨팅학회논문지
    • /
    • 제13권5호
    • /
    • pp.124-130
    • /
    • 2017
  • 문자 인코딩은 문자나 기호를 컴퓨터로 표현하기 위해 사용되는 방법이며 문자 인코딩 판별 소프트웨어들이 존재한다. 기존의 널리 쓰이는 인코딩 판별 소프트웨어인"uchardet"의 경우 변조되지 않은 일반 문서의 인코딩 판별 정확도는 91.39% 이지만 언어 판별 정확도는 32.09%에 불과하다. 또한 문서가 치환 암호에 의해 암호화 된 경우 인코딩 판별 정확도는 3.55%, 언어 판별 정확도는 0.06%로 매우 낮은 정확도를 보였다. 따라서 본 논문에서는 Deep learning 알고리즘인 LSTM(Long Short-Term Memory)을 이용한 문서의 인코딩 및 언어 판별 방법을 제안하며, 기존의 인코딩 판별 소프트웨어"uchardet"보다 뛰어난 결과를 보였다. 제안하는 방법을 이용한 일반 문서의 인코딩 판별 정확도는 99.89%이며, 언어 판별 정확도는 99.92%이다. 또한 문서가 치환 암호에 의해 암호화된 경우에는 제안하는 방법의 인코딩 판별 정확도는 99.26%이며, 언어 판별 정확도는 99.77%로 매우 뛰어나다.

A Vehicular License Plate Recognition Framework For Skewed Images

  • Arafat, M.Y.;Khairuddin, A.S.M.;Paramesran, R.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권11호
    • /
    • pp.5522-5540
    • /
    • 2018
  • Vehicular license plate (LP) recognition system has risen as a significant field of research recently because various explorations are currently being conducted by the researchers to cope with the challenges of LPs which include different illumination and angular situations. This research focused on restricted conditions such as using image of only one vehicle, stationary background, no angular adjustment of the skewed images. A real time vehicular LP recognition scheme is proposed for the skewed images for detection, segmentation and recognition of LP. In this research, a polar co-ordinate transformation procedure is implemented to adjust the skewed vehicular images. Besides that, window scanning procedure is utilized for the candidate localization that is based on the texture characteristics of the image. Then, connected component analysis (CCA) is implemented to the binary image for character segmentation where the pixels get connected in an eight-point neighbourhood process. Finally, optical character recognition is implemented for the recognition of the characters. For measuring the performance of this experiment, 300 skewed images of different illumination conditions with various tilt angles have been tested. The results show that proposed method able to achieve accuracy of 96.3% in localizing, 95.4% in segmenting and 94.2% in recognizing the LPs with an average localization time of 0.52s.

문서 처리 자동화를 위한 인보이스 이미지의 구조 인식 방법 (Structure Recognition Method of Invoice Document Image for Document Processing Automation)

  • 이동석;권순각
    • 한국산업정보학회논문지
    • /
    • 제28권2호
    • /
    • pp.11-19
    • /
    • 2023
  • 본 논문은 인보이스 문서 이미지에 문서 처리 자동화를 적용하기 위한 문서 구조 인식 방법과 문서 구조 인식 결과를 토대로 스프레드문서 형태로 출력하는 방법을 제안한다. 딥러닝 OCR 엔진을 통해 문서 내 단어 블록들과 해당 블록들의 문자 인식 결과를 얻는다. 단어 블록의 위치 정보들을 통해 같은 행과 같은 열에 존재하는 단어 블록들을 검출한다. 단어 블록들의 배치 정보를 통해 문서 영역을 분할한다. 문서의 구역 정보를 통해 얻어진 문서 구조를 토대로 스프레드시트의 알맞은 위치에 문자 인식 결과를 입력한다. 실험 결과 제안된 방법을 통한 항목 배치는 평균 92.30%의 정확도를 보인다.

Haar-like Feature 및 CLNF 알고리즘을 이용한 차량 번호판 인식 (A Vehicle License Plate Recognition Using the Haar-like Feature and CLNF Algorithm)

  • 박승현;조성원
    • 스마트미디어저널
    • /
    • 제5권1호
    • /
    • pp.15-23
    • /
    • 2016
  • 본 논문은 한국의 차량 번호판 인식에 효과적인 방법을 제안한다. 획득한 자동차 이미지로부터 Haar-Like Feature를 이용해 대략적인 번호판 후보 영역을 찾아낸 후, 랭크 필터를 사용하여 전처리를 하고 캐니 에지 추출 (Canny Edge Detecting) 알고리즘을 이용하여 연결된 사각형을 찾아 번호판을 추출한다. 추출된 번호판의 색상 정보를 이용하여 흰색/녹색 번호판을 구분하고, 각 번호판을 OTSU 이진화와 주변 전경 픽셀 전파 알고리즘인 CLNF (CCLUF with NFPP)을 통해 문자를 제외한 잡음을 제거하고 레이블링하여 숫자 및 문자 영역을 분리한다. 분리된 문자 영역은 메쉬 방법 및 세선화 후 X-Y 투영 방법으로 특징 벡터를 추출한다. 추출된 특징 벡터는 역전파 알고리즘을 사용하여 학습된 신경망을 이용하여 문자 인식을 수행한다. 제안된 차량 번호판 인식 알고리즘의 효과적 동작은 실험을 통해 확인하였다.

모바일 기반 Air Writing을 위한 객체 탐지 및 광학 문자 인식 방법 (Object Detection and Optical Character Recognition for Mobile-based Air Writing)

  • 김태일;고영진;김태영
    • 한국차세대컴퓨팅학회논문지
    • /
    • 제15권5호
    • /
    • pp.53-63
    • /
    • 2019
  • 모바일 환경에서 딥러닝을 통한 손 제스처 인터페이스를 제공하려면 높은 인식률을 제공하면서 실행속도의 저하를 막기 위한 네트워크 경량화의 연구가 필수적이다. 본 논문은 딥러닝 모델의 경량화를 통해 모바일 기기에서 손가락을 이용하여 공중에 쓴 문자를 실시간으로 인식하는 방법을 제안한다. MobileNet을 특징 추출기로 활용하는 객체 탐지 모델인 SSD (Single Shot Detector)를 기반으로 집게손가락을 탐지하고 손끝 경로를 이어 결과문자 영상을 생성한다. 이 영상은 서버로 전송되어 정규화 과정을 수행한 다음 학습된 OCR 모델을 이용하여 문자를 인식한다. 본 방법을 검증하기 위하여 12명의 사용자가 GALAXY S10+ 기기를 사용하여 1,000개의 단어를 실험한 결과 평균 88.6%의 정확도로 손가락을 인식하고 124 ms 이내로 인식된 텍스트가 출력되어 실시간으로 활용 가능함을 알 수 있었다. 본 연구결과는 모바일 환경에서 손가락을 이용한 간단한 문자 전송, 메모 및 공중 서명 등에 활용될 수 있다.

Real-Time Vehicle License Plate Detection Based on Background Subtraction and Cascade of Boosted Classifiers

  • Sarker, Md. Mostafa Kamal;Song, Moon Kyou
    • 한국통신학회논문지
    • /
    • 제39C권10호
    • /
    • pp.909-919
    • /
    • 2014
  • License plate (LP) detection is the most imperative part of an automatic LP recognition (LPR) system. Typical LPR contains two steps, namely LP detection (LPD) and character recognition. In this paper, we propose an efficient Vehicle-to-LP detection framework which combines with an adaptive GMM (Gaussian Mixture Model) and a cascade of boosted classifiers to make a faster vehicle LP detector. To develop a background model by using a GMM is possible in the circumstance of a fixed camera and extracts the motions using background subtraction. Firstly, an adaptive GMM is used to find the region of interest (ROI) on which motion detectors are running to detect the vehicle area as blobs ROIs. Secondly, a cascade of boosted classifiers is executed on the blobs ROIs to detect a LP. The experimental results on our test video with the resolution of $720{\times}576$ show that the LPD rate of the proposed system is 99.14% and the average computational time is approximately 42ms.

Target Detection Based on Moment Invariants

  • Wang, Jiwu;Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.677-680
    • /
    • 2003
  • Perceptual landmarks are an effective solution for a mobile robot realizing steady and reliable long distance navigation. But the prerequisite is those landmarks must be detected and recognized robustly at a higher speed under various lighting conditions. This made image processing more complicated so that its speed and reliability can not be both satisfied at the same time. Color based target detection technique can separate target color regions from non-target color regions in an image with a faster speed, and better results were obtained only under good lighting conditions. Moreover, in the case that there are other things with a target color, we have to consider other target features to tell apart the target from them. Such thing always happens when we detect a target with its single character. On the other hand, we can generally search for only one target for each time so that we can not make use of landmarks efficiently, especially when we want to make more landmarks work together. In this paper, by making use of the moment invariants of each landmark, we can not only search specified target from separated color region but also find multi-target at the same time if necessary. This made the finite landmarks carry on more functions. Because moment invariants were easily used with some low level image processing techniques, such as color based target detection and gradient runs based target detection etc, and moment invariants are more reliable features of each target, the ratio of target detection were improved. Some necessary experiments were carried on to verify its robustness and efficiency of this method.

  • PDF

발효유제품에서 박테리오파지의 특성, 검출과 제어 (The Characteristics, Detection and Control of Bacteriophage in Fermented Dairy Products)

  • 안성일;리합 아조니;트란 티 탄 후옌;곽해수
    • 한국축산식품학회지
    • /
    • 제29권1호
    • /
    • pp.1-14
    • /
    • 2009
  • This study was to review the classification, detection and control of bacteriophage in fermented dairy products. Bacteriophage has lytic and/or lysogenic life cycles. Epidemiologically speaking, detected major phages are c2, 936 and p335. Among them p335 has been the largest concern in dairy industry. Traditionally, various analytical technologies, such as spot, starter activity, indicator test, ATP measurement and conductimetric analysis, have been used for the phage detection. In recent years, advanced methods such as flow cytometric method, petrifilm, enzyme linked immunosorbent assay (ELISA) and multiflex PCR diagnostic kit have been deveoloped. The phage contamination has been controlled by using heat, high-pressure treatment, and the combinations of heat and pressure, and/or chemical. Also some starter cultures with phage-resistant character have been developed to minimize the concentration of phages in dairy product. Bacteriophage inhibition media such as calcium medium was also mentioned. To prevent the contamination of bacteriophage in dairy industry, further researches on the detection and control of phage, and phage resistant starters are necessary in the future.