• Title/Summary/Keyword: Character Detection

Search Result 249, Processing Time 0.021 seconds

A Method of Detecting Character Data through a Adaboost Learning Method (에이다부스트 학습을 이용한 문자 데이터 검출 방법)

  • Jang, Seok-Woo;Byun, Siwoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.655-661
    • /
    • 2017
  • It is a very important task to extract character regions contained in various input color images, because characters can provide significant information representing the content of an image. In this paper, we propose a new method for extracting character regions from various input images using MCT features and an AdaBoost algorithm. Using geometric features, the method extracts actual character regions by filtering out non-character regions from among candidate regions. Experimental results show that the suggested algorithm accurately extracts character regions from input images. We expect the suggested algorithm will be useful in multimedia and image processing-related applications, such as store signboard detection and car license plate recognition.

Popular Object detection algorithms in deep learning (딥러닝을 이용한 객체 검출 알고리즘)

  • Kang, Dongyeon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.427-430
    • /
    • 2019
  • Object detection is applied in various field. Autonomous driving, surveillance, OCR(optical character recognition) and aerial image etc. We will look at the algorithms that are using to object detect. These algorithms are divided into two methods. The one is R-CNN algorithms [2], [5], [6] which based on region proposal. The other is YOLO [7] and SSD [8] which are one stage object detector based on regression/classification.

Recognition of Passport MRZ Information Using Combined Neural Networks (결합 신경망을 이용한 여권 MRZ 정보 인식)

  • Kim, Jinho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.4
    • /
    • pp.149-157
    • /
    • 2019
  • In case of reading passport using a smart phone in contrast with a dedicated passport reading system, MRZ(Machine Readable Zone) character recognition can be hard when the character strokes were broken, touched or blurred according to the lighting condition, and the position and size of MRZ character lines were varied due to the camera distance and angle. In this paper, the effective recognition algorithm of the passport MRZ information using a combined neural network recognizer of CNN(Convolutional Neural Network) and ANN( Artificial Neural Network), is proposed under the various sized and skewed passport images. The MRZ line detection using connected component analysis algorithm and the skew correction using perspective transform algorithm are also designed in order to achieve effective character segmentation results. Each of the MRZ field recognition results is verified by using five check digits for deciding whether retrying the recognition process of passport MRZ information or not. After we implement the proposed recognition algorithm of passport MRZ information, the excellent recognition performance of the passport MRZ information was obtained in the experimental results for PC off-line mode and smart phone on-line mode.

Character String Detection using Character-Edge Map with Adaptive Character Size and Character String Orientation in Natural Images (자연영상에서 문자의 크기와 문자열의 방향에 적응적인 문자-에지 맵을 이용한 문자열 검출)

  • Park, Jong-Cheon;Hwang, Dong-Guk;Lee, Woo-Ram;Jun, Byoung-Min
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.11a
    • /
    • pp.262-265
    • /
    • 2007
  • 이미지 데이터베이스 시스템에서 이미지에 포함된 문자정보를 기반으로 검색어를 사용한다면 검색의 정확도 높일 수 있다. 이미지에서 문자정보를 추출을 위한 전단계로서 문자열 영역 검출이 필수적인 과제가 된다. 그러므로 본 논문에서는 문자의 크기와 문자열의 방향에 적응적인 문자-에지 맵을 이용한 문자열 영역 검출 방법을 제안한다. 캐니-에지 검출기로 에지를 추출하고, 생성된 에지 이미지로 레이블 이미지를 얻고, 그 영역의 문자구조 특징을 분석하기 위해서 배열문법으로 문자-에지 맵에 적응적으로 분석한다. 문자-에지 맵의 분석결과로서 문자열 후보 영역을 얻고, 문자열 영역의 구조적인 특징을 이용하여 문자열 후보 영역을 검증함으로서 최종적인 문자열 영역을 검출한다. 제안한 방법은 다양한 종류의 자연영상을 대상으로 실험하였고, 자연영상에서 기울어진 문자열과 다양한 크기의 문자를 갖는 문자열 영역을 효과적으로 검출하였다.

  • PDF

Multi-Style License Plate Recognition System using K-Nearest Neighbors

  • Park, Soungsill;Yoon, Hyoseok;Park, Seho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2509-2528
    • /
    • 2019
  • There are various styles of license plates for different countries and use cases that require style-specific methods. In this paper, we propose and illustrate a multi-style license plate recognition system. The proposed system performs a series of processes for license plate candidates detection, structure classification, character segmentation and character recognition, respectively. Specifically, we introduce a license plate structure classification process to identify its style that precedes character segmentation and recognition processes. We use a K-Nearest Neighbors algorithm with pre-training steps to recognize numbers and characters on multi-style license plates. To show feasibility of our multi-style license plate recognition system, we evaluate our system for multi-style license plates covering single line, double line, different backgrounds and character colors on Korean and the U.S. license plates. For the evaluation of Korean license plate recognition, we used a 50 minutes long input video that contains 138 vehicles of 6 different license plate styles, where each frame of the video is processed through a series of license plate recognition processes. From two experiments results, we show that various LP styles can be recognized under 50 ms processing time and with over 99% accuracy, and can be extended through additional learning and training steps.

Character Detection and Recognition of Steel Materials in Construction Drawings using YOLOv4-based Small Object Detection Techniques (YOLOv4 기반의 소형 물체탐지기법을 이용한 건설도면 내 철강 자재 문자 검출 및 인식기법)

  • Sim, Ji-Woo;Woo, Hee-Jo;Kim, Yoonhwan;Kim, Eung-Tae
    • Journal of Broadcast Engineering
    • /
    • v.27 no.3
    • /
    • pp.391-401
    • /
    • 2022
  • As deep learning-based object detection and recognition research have been developed recently, the scope of application to industry and real life is expanding. But deep learning-based systems in the construction system are still much less studied. Calculating materials in the construction system is still manual, so it is a reality that transactions of wrong volumn calculation are generated due to a lot of time required and difficulty in accurate accumulation. A fast and accurate automatic drawing recognition system is required to solve this problem. Therefore, we propose an AI-based automatic drawing recognition accumulation system that detects and recognizes steel materials in construction drawings. To accurately detect steel materials in construction drawings, we propose data augmentation techniques and spatial attention modules for improving small object detection performance based on YOLOv4. The detected steel material area is recognized by text, and the number of steel materials is integrated based on the predicted characters. Experimental results show that the proposed method increases the accuracy and precision by 1.8% and 16%, respectively, compared with the conventional YOLOv4. As for the proposed method, Precision performance was 0.938. The recall was 1. Average Precision AP0.5 was 99.4% and AP0.5:0.95 was 67%. Accuracy for character recognition obtained 99.9.% by configuring and learning a suitable dataset that contains fonts used in construction drawings compared to the 75.6% using the existing dataset. The average time required per image was 0.013 seconds in the detection, 0.65 seconds in character recognition, and 0.16 seconds in the accumulation, resulting in 0.84 seconds.

An Efficient Numeric Character Segmentation of Metering Devices for Remote Automatic Meter Reading (원격 자동 검침을 위한 효과적인 계량기 숫자 분할)

  • Toan, Vo Van;Chung, Sun-Tae;Cho, Seong-Won
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.6
    • /
    • pp.737-747
    • /
    • 2012
  • Recently, in order to support automatic meter reading for conventional metering devices, an image processing-based approach of recognizing the number meter data in the captured meter images has attracted many researchers' interests. Numerical character segmentation is a very critical process for successful recognition. In this paper, we propose an efficient numeric character segmentation method which can segment numeric characters well for any metering device types under diverse illumination environments. The proposed method consists of two consecutive stages; detection of number area containing all numbers as a tight ROI(Region of Interest) and segmentation of numerical characters in the ROI. Detection of tight ROI is achieved in two steps: extraction of rough ROI by utilizing horizontal line segments after illumination enhancement preprocessing, and making the rough ROI more tight through clipping utilizing vertical and horizontal projection about binarized ROI. Numerical character segmentation in the detected ROI is stably achieved in two processes of 'vertical segmentation of each number region' and 'number segmentation in the each vertical segmented number region'. Through the experiments about a homegrown meter image database containing various meter type images of low contrast, low intensity, shadow, and saturation, it is shown that the proposed numeric character segmentation method performs effectively well for any metering device types under diverse illumination environments.

Pole Position Detection Method by Using Pole and Character Recognition (전철주 및 문자 인식을 이용한 시설물 절대위치 검지 방법)

  • Choi, Woo-Yong;Park, Jong-Gook;Lee, Byeong-Gon;Joo, Yong-Hwan;Han, Seung-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.704-710
    • /
    • 2016
  • In this paper, we proposed pole position detection system for providing exact location information to users. The proposed system consists of pole recognition part and pole number recognition part. Above all, exact pole recognition is carried out by PDD(Pole Detection Device). And recognition of pole number is performed by PID(Pole Inspection Device). Acquired image by using line scan camera is judged whether it is free bracket or not through image processing. When it is judged as free bracket, pole number image is acquired by OCR camera and recognized by OCR. By recognizing pole number, exact location information is provided to user.

A Study on Manipulating Method of 3D Game in HMD Environment by using Eye Tracking (HMD(Head Mounted Display)에서 시선 추적을 통한 3차원 게임 조작 방법 연구)

  • Park, Kang-Ryoung;Lee, Eui-Chul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.2
    • /
    • pp.49-64
    • /
    • 2008
  • Recently, many researches about making more comfortable input device based on gaze detection technology have been done in human computer interface. However, the system cost becomes high due to the complicated hardware and there is difficulty to use the gaze detection system due to the complicated user calibration procedure. In this paper, we propose a new gaze detection method based on the 2D analysis and a simple user calibration. Our method used a small USB (Universal Serial Bus) camera attached on a HMD (Head-Mounted Display), hot-mirror and IR (Infra-Red) light illuminator. Because the HMD is moved according to user's facial movement, we can implement the gaze detection system of which performance is not affected by facial movement. In addition, we apply our gaze detection system to 3D first person shooting game. From that, the gaze direction of game character is controlled by our gaze detection method and it can target the enemy character and shoot, which can increase the immersion and interest of game. Experimental results showed that the game and gaze detection system could be operated at real-time speed in one desktop computer and we could obtain the gaze detection accuracy of 0.88 degrees. In addition, we could know our gaze detection technology could replace the conventional mouse in the 3D first person shooting game.