• Title/Summary/Keyword: Channel-estimation

Search Result 1,333, Processing Time 0.033 seconds

Performance Analysis of WF-MIMO Systems with Channel Estimation Error (채널 추정 오차를 고려한 WF-MIMO 시스템의 성능 분석)

  • Ham, Jae-Sang;Yoo, Byoung-Wook;Kang, Ji-Won;Lee, Chung-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.8
    • /
    • pp.91-97
    • /
    • 2008
  • The conventional WF(water-filling)-MIMO systems assumes that the channel state information is perfectly known at receiver. However, since, generally, the perfect channel state information is not available at receiver, channel estimation error should be considered at the system. Therefore, in this paper 4he performance of the conventional WF-MIMO systems is numerically analyzed when channel estimation error is considered. The analysis results show that mean square error of channel estimation up to $10^{-4}$ is tolerable to get the same performance obtained when perfect channel information is available.

Design of a Channel Estimator for the LTE System Based on the Multirate Signal Processing (다속신호처리 기법을 이용한 LTE 시스템 채널 추정기법 설계)

  • Yoo, Kyung-Yul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.2108-2113
    • /
    • 2010
  • The Long Term Evolution (LTE) system is based on the Orthogonal Frequency Division Multiplexing (OFDM) and relies its channel estimation on the lattice-type pilot samples in the multipath fading channel environment. The estimation of the channel frequency response (CFR) makes use of the least squares estimate (LSE) for each pilot samples, followed by an interpolation both in time- and in frequency-domain to fill up the channel estimates for subcarriers corresponding to data samples. Any interpolation scheme could be adopted for this purpose. Depending on the requirements of the target system, we may choose a simple linear interpolation or a sophisticated one. For any choice of an interpolation scheme, these is a trade-off between estimation accuracy and numerical cost. For those wireless communication systems based on the OFDM and the preamble-type pilot structure, the DFT-based channel estimation and its variants have been successfully. Yet, it may not be suitable for the lattice-type pilot structure, since the pilot samples are not sufficient to provide an accurate estimate and it is known to be sensitive to the location as well as the length of the time-domain window. In this paper, we propose a simple interpolated based on the upsampling mechanism in the multirate signal processing. The proposed method provides an excellent alternative to the DFT-based methods in terms of numerical cost and accuracy. The performance of the proposed technique is verified on a multipath environment suggested on a 3GPP LTE specification.

Traffic Flow Estimation based Channel Assignment for Wireless Mesh Networks

  • Pak, Woo-Guil;Bahk, Sae-Woong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.68-82
    • /
    • 2011
  • Wireless mesh networks (WMNs) provide high-speed backbone networks without any wired cable. Many researchers have tried to increase network throughput by using multi-channel and multi-radio interfaces. A multi-radio multi-channel WMN requires channel assignment algorithm to decide the number of channels needed for each link. Since the channel assignment affects routing and interference directly, it is a critical component for enhancing network performance. However, the optimal channel assignment is known as a NP complete problem. For high performance, most of previous works assign channels in a centralized manner but they are limited in being applied for dynamic network environments. In this paper, we propose a simple flow estimation algorithm and a hybrid channel assignment algorithm. Our flow estimation algorithm obtains aggregated flow rate information between routers by packet sampling, thereby achieving high scalability. Our hybrid channel assignment algorithm initially assigns channels in a centralized manner first, and runs in a distributed manner to adjust channel assignment when notable traffic changes are detected. This approach provides high scalability and high performance compared with existing algorithms, and they are confirmed through extensive performance evaluations.

Impact of Channel Estimation Errors on BER Performance of Single-User Decoding NOMA System

  • Chung, Kyuhyuk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.18-25
    • /
    • 2020
  • In the fifth generation (5G) and beyond 5G (B5G) mobile communication, non-orthogonal multiple access (NOMA) has attracted great attention due to higher spectral efficiency and massive connectivity. We investigate the impacts of the channel estimation errors on the bit-error rate (BER) of NOMA, especially with the single-user decoding (SUD) receiver, which does not perform successive interference cancellation (SIC), in contrast to the conventional SIC NOMA scheme. First, an analytical expression of the BER for SUD NOMA with channel estimation errors is derived. Then, it is demonstrated that the BER performance degrades severely up to the power allocation less than about 20%. Additionally, we show that for the fixed power allocation of 10% in such power allocation range, the signal-to-noise (SNR) loss owing to channel estimation errors is about 5 dB. As a consequence, the channel estimation error should be considered for the design of the SUD NOMA scheme.

An Adaptive Mobility Estimator for the Estimation of Time-Variant OFDM Channels

  • Kim, Dae-jin;Kim, Cheol-Min;Park, Sung-Woo
    • Journal of Broadcast Engineering
    • /
    • v.6 no.1
    • /
    • pp.72-81
    • /
    • 2001
  • An adaptive channel estimation technique for OFDM-based DTV receivers is proposed using a new mobility estimator. Sample mean techniques for channel estimation have displayed good performance in slow fading channels, because averaging reduces noise In channel estimation operation. This paper suggests an algorithm which selects the optimal number of symbols within which the sample mean of consecutive pilot data can be obtained. The designed mobility estimator determines the optimal number by comparing mobility variance and estimated noise valiance. The algorithm using the mobility estimator obtains an optimal channel function under time-invariant or time-variant multipath fading channels, thereby making the best BER performance.

  • PDF

Alternating-Projection-Based Channel Estimation for Multicell Massive MIMO Systems

  • Chen, Yi Liang;Ran, Rong;Oh, Hayoung
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.1
    • /
    • pp.17-22
    • /
    • 2018
  • In massive multiple-input multiple-output (MIMO) systems, linear channel estimation algorithms are widely applied owing to their simple structures. However, they may cause pilot contamination, which affects the subsequent data detection performance. Therefore, herein, for an uplink multicell massive multiuser MIMO system, we consider using an alternating projection (AP) for channel estimation to eliminate the effect of pilot contamination and improve the performance of data detection in terms of the bit error rates as well. Even though the AP is nonlinear, it iteratively searches the best solution in only one dimension, and the computational complexity is thus modest. We have analyzed the mean square error with respect to the signal-to-interference ratios for both the cooperative and non-cooperative multicell scenarios. From the simulation results, we observed that the channel estimation results via the AP benefit the following signal detection more than that via the least squares for both the cooperative and non-cooperative multicell scenarios.

Sliding Window and Successive Cancellation Channel Estimation Schemes based on Pilot Spread Code in DS-UWB System

  • Wang, Yupeng;Kim, Jung-Ju;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10A
    • /
    • pp.949-957
    • /
    • 2005
  • In this paper, the performances of a single-user DS-UWB system applying two simple proposed channel estimation schemes are introduced, according to the newly updated DS-UWB PHY Layer standard from IEEE P802.15.3a. The performances of error control coding, different combining schemes in selective Rake receiver for DS-UWB system are analyzed. Both of the two channel estimation schemes using data-independent structure work well in DS-UWB system with few pilot bits. For the purpose of channel estimation and reduces the number of pilot bits, we apply a pilot symbol spreaded with $2{^8}-1\;or\;2{^9}-1$ periods of m-sequence for different channel estimation schemes.

A Novel Channel Estimation Scheme for OFDM/OQAM-IOTA System

  • Kang, Seung-Won;Chang, Kyung-Hi
    • ETRI Journal
    • /
    • v.29 no.4
    • /
    • pp.430-436
    • /
    • 2007
  • An OFDM/offset QAM (OQAM)-IOTA system uses the isotropic orthogonal transform algorithm (IOTA) function, which has good localization properties in the time and frequency domains. This is employed instead of the guard interval used in a conventional OFDM/QAM system in order to be robust for multi-path channels. However, the conventional channel estimation scheme is not valid for an OFDM/OQAM-IOTA system due to the intrinsic inter-symbol interference of the IOTA function. In this paper, a condition is derived to reduce the intrinsic interference of the IOTA function. This condition is obtained with the proposed pilot structure used for perfect channel estimation. We also derive the preamble structure appropriate for practical channel estimation of the OFDM/OQAM-IOTA system. Simulation results show that the OFDM/OQAM-IOTA system with the proposed preamble structure performs better than the conventional OFDM system, and it has the additional advantage of an increased data transmission rate which corresponds to the guard interval retrieval.

  • PDF

Performance of SC-FDE System in UWB Communications with Imperfect Channel Estimation

  • Wang, Yue;Dong, Xiaodai
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.466-472
    • /
    • 2007
  • Single carrier block transmission with frequency domain equalization(SC-FDE) has been shown to be a promising candidate in ultra-wideband(UWB) communications. In this paper, we analyze the performance of SC-FDE over UWB communications with channel estimation error. The probability density functions of the frequency domain minimum mean-squared error(MMSE) equalizer taps are derived in closed form. The error probabilities of single carrier block transmission with frequency domain MMSE equalization under imperfect channel estimation are presented and evaluated numerically. Compared with the simulation results, our semi-analytical analysis yields fairly accurate bit error rate performance, thus validating the use of the Gaussian approximation method in the performance analysis of the SC-FDE system with channel estimation error.

Performance Evaluation of Interference Alignment Based on Analog CSI Feedback in Continuously-Varying Interference Channel (연속적으로 변하는 간섭채널에서 아날로그 피드백을 이용한 간섭정렬의 성능 평가)

  • Song, Kyoung-Young;Lim, Dae-Woon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.1
    • /
    • pp.65-67
    • /
    • 2014
  • In this letter, the performance of the interference channel with continuously varying channel is evaluated by using interference alignment based on practical channel estimation and channel state information(CSI) feedback and ideal Doppler frequency estimation. In this paper, performance evaluation is performed in terms of sum rate for 3-user interference channel. And also, sum rate is measured according to frequency of channel estimation relating with the calculation complexity. Simulation results show that the proposed scheme outperforms the conventional one which assumes that the channel is constant in a frame in some circumstances.