• 제목/요약/키워드: Channel routing

검색결과 275건 처리시간 0.032초

충주댐 방류에 따른 댐 상하류 홍수위 영향 분석 (Effect of Chungju Dam Operation for Flood Control in the Upper Han River)

  • 김상호;김지성
    • 대한토목학회논문집
    • /
    • 제33권2호
    • /
    • pp.537-548
    • /
    • 2013
  • 본 연구에서는 2006년 홍수시 충주댐 운영에 따른 댐 상 하류의 홍수위 상승영향을 정량적으로 분석하기 위하여 팔당댐 상류의 한강 본류에 위치한 충주댐을 기준으로 상류구간과 하류구간으로 구분하고, 1995년부터 2008년까지의 홍수사상을 대상으로 모형을 검보정함으로써 수리학적 모형을 구축하였다. 구축된 모형을 이용하여 충주댐의 유무를 가정하여 충주댐의 홍수조절효과를 검토하고, 방류량의 변화에 따른 상 하류 주요지점의 수위 상승영향을 정량적으로 분석하였다. 분석결과, 2006년 홍수시 충주댐의 운영이 비교적 적절하게 수행되었음을 확인하였으나, 충주댐의 홍수조절효과는 댐 하류구간에 집중되어 있어 댐 상류 홍수피해 저감을 위한 제도적 보완이 필요한 것으로 분석되었다. 이러한 문제점을 해결하기 위하여 기존 댐 배수구간 상류 하천의 기점수위 결정방법의 한계를 검토하였으며, 댐 배수구간과 상류 하천의 계획홍수량 불연속을 반영할 수 있는 기점수위 결정방법을 제안하였다. 제안된 방법은 댐 상류하천의 홍수피해 저감을 위한 설계 및 홍수피해 발생시 피해원인 분석에 활용될 수 있을 것이다.

청계천 유역에 대한 WEP 모형의 적용 (Application of WEP Model to the Cheonggyecheon Watershed)

  • 노성진;김현준;장철희
    • 한국수자원학회논문집
    • /
    • 제38권8호
    • /
    • pp.645-653
    • /
    • 2005
  • 청계천 유역(유로연장: 13.75 km, 유역면적: $50.95\;km^2$)의 물순환 해석에 물리적 개념의 공간 분포형 강우-유출 모형인 WEP 모형을 적용하였다. 모형 적용 결과, 청계천 유역은 전형적인 도시 유역의 특성을 나타내었는데, 강우시의 지표면 유출량이 크고, 강우의 유출에 대한 반응이 빠르며, 증발산의 경우는 산림지역보다 도시지역이 상대적으로 적었다. 또한 관측값과 비교한 결과 청계천의 하천 유출을 모의하기에 적절함을 알 수 있었고, 이를 토대로 청계천 유역 자체의 복원후 유지유량 공급능력에 대해 추정하였다. WEP 모형의 적용 결과, 2002년 청계천 유역의 물수지는 연간 1,388 mm의 강우에 대하여 830 mm의 지표면 유출이 발생하고 388 mm가 침투되며 397 mm가 증발산에 의해 대기중으로 방출되었다. 하천유출량은 1,228 mm로 이 중 지표면 유출, 중간 유출, 지하수 유출의 비율은 각각 $67.6\%,\;12.7\%,\;19.7\%$이었다.

유출모형을 이용한 곡교천 유역의 강우-유출 특성 분석 (Analysis of Rainfall-Runoff Characteristics in Gokgyochun Basin Using a Runoff Model)

  • 황병기;조용수;양승빈
    • 한국산학기술학회논문지
    • /
    • 제20권2호
    • /
    • pp.404-411
    • /
    • 2019
  • 곡교천 유역의 홍수-유출 특성을 파악하는 연구를 수행하기 위하여 HEC-HMS 모형을 적용하였다. 이 유역은 일부 소유역에서 대규모 농업용 저수지가 있어 소유역으로부터 발생한 초기 유출이 저수지에 의해서 상당량 저류되는 특징을 갖고 있다. 이러한 현상을 반영하기 위하여 3가지 침투모의 방법을 사용하였으며, 방법 1은 기존의 유출곡선지수법, 방법 2는 방법 1에 표면법 기능을 추가한 방법, 방법 3은 초기 및 일정손실율 방법이다. 모형은 3가지 방법으로 손실계산, Clark의 단위도법으로 강우의 직접유출 변환, 지수함수적 감소법으로 기저유량, Muskingum 법으로 하도추적 하는 과정을 포함한다. 모형에서 최적화 기법을 시행착오법과 병행하여 최적화 변수를 도출하였다. NSE, RAR, and PBIAS 등의 평가지표를 사용하여 모형의 보정을 수행하였다. 유출체적, 첨두유량, 첨두발생시각 등에 대하여 모의치와 실측치를 비교한 결과 초기손실을 반영할 수 있도록 설계된 방법2와 3에서 우수한 결과를 나타낸 반면, 그렇지 못한 방법 1은 모의치와 실측치의 차이가 큰 것으로 나타났다. 복합 강우인 경우에 방법 3은 방법 2에 비하여 좋은 결과를 나타내지 못하였다. 결론적으로 방법 2가 단일 강우나 복합강우 모두 좋은 결과를 주는 것으로 나타났다. 본 연구의 결과는 정책입안자가 홍수관리대책을 수립하는 데 유용한 도구로서 사용되어 질 수 있을 것으로 판단된다.

유역특성에 의한 합성단위도의 유도에 관한 연구 (Derivation of the Synthetic Unit Hydrograph Based on the Watershed Characteristics)

  • 서승덕
    • 한국농공학회지
    • /
    • 제17권1호
    • /
    • pp.3642-3654
    • /
    • 1975
  • The purpose of this thesis is to derive a unit hydrograph which may be applied to the ungaged watershed area from the relations between directly measurable unitgraph properties such as peak discharge(qp), time to peak discharge (Tp), and lag time (Lg) and watershed characteristics such as river length(L) from the given station to the upstream limits of the watershed area in km, river length from station to centroid of gravity of the watershed area in km (Lca), and main stream slope in meter per km (S). Other procedure based on routing a time-area diagram through catchment storage named Instantaneous Unit Hydrograph(IUH). Dimensionless unitgraph also analysed in brief. The basic data (1969 to 1973) used in these studies are 9 recording level gages and rating curves, 41 rain gages and pluviographs, and 40 observed unitgraphs through the 9 sub watersheds in Nak Oong River basin. The results summarized in these studies are as follows; 1. Time in hour from start of rise to peak rate (Tp) generally occured at the position of 0.3Tb (time base of hydrograph) with some indication of higher values for larger watershed. The base flow is comparelatively higher than the other small watershed area. 2. Te losses from rainfall were divided into initial loss and continuing loss. Initial loss may be defined as that portion of storm rainfall which is intercepted by vegetation, held in deppression storage or infiltrated at a high rate early in the storm and continuing loss is defined as the loss which continues at a constant rate throughout the duration of the storm after the initial loss has been satisfied. Tis continuing loss approximates the nearly constant rate of infiltration (${\Phi}$-index method). The loss rate from this analysis was estimated 50 Per cent to the rainfall excess approximately during the surface runoff occured. 3. Stream slope seems approximate, as is usual, to consider the mainstreamonly, not giving any specific consideration to tributary. It is desirable to develop a single measure of slope that is representative of the who1e stream. The mean slope of channel increment in 1 meter per 200 meters and 1 meter per 1400 meters were defined at Gazang and Jindong respectively. It is considered that the slopes are low slightly in the light of other river studies. Flood concentration rate might slightly be low in the Nak Dong river basin. 4. It found that the watershed lag (Lg, hrs) could be expressed by Lg=0.253 (L.Lca)0.4171 The product L.Lca is a measure of the size and shape of the watershed. For the logarithms, the correlation coefficient for Lg was 0.97 which defined that Lg is closely related with the watershed characteristics, L and Lca. 5. Expression for basin might be expected to take form containing theslope as {{{{ { L}_{g }=0.545 {( { L. { L}_{ca } } over { SQRT {s} } ) }^{0.346 } }}}} For the logarithms, the correlation coefficient for Lg was 0.97 which defined that Lg is closely related with the basin characteristics too. It should be needed to take care of analysis which relating to the mean slopes 6. Peak discharge per unit area of unitgraph for standard duration tr, ㎥/sec/$\textrm{km}^2$, was given by qp=10-0.52-0.0184Lg with a indication of lower values for watershed contrary to the higher lag time. For the logarithms, the correlation coefficient qp was 0.998 which defined high sign ificance. The peak discharge of the unitgraph for an area could therefore be expected to take the from Qp=qp. A(㎥/sec). 7. Using the unitgraph parameter Lg, the base length of the unitgraph, in days, was adopted as {{{{ {T}_{b } =0.73+2.073( { { L}_{g } } over {24 } )}}}} with high significant correlation coefficient, 0.92. The constant of the above equation are fixed by the procedure used to separate base flow from direct runoff. 8. The width W75 of the unitgraph at discharge equal to 75 per cent of the peak discharge, in hours and the width W50 at discharge equal to 50 Per cent of the peak discharge in hours, can be estimated from {{{{ { W}_{75 }= { 1.61} over { { q}_{b } ^{1.05 } } }}}} and {{{{ { W}_{50 }= { 2.5} over { { q}_{b } ^{1.05 } } }}}} respectively. This provides supplementary guide for sketching the unitgraph. 9. Above equations define the three factors necessary to construct the unitgraph for duration tr. For the duration tR, the lag is LgR=Lg+0.2(tR-tr) and this modified lag, LgRis used in qp and Tb It the tr happens to be equal to or close to tR, further assume qpR=qp. 10. Triangular hydrograph is a dimensionless unitgraph prepared from the 40 unitgraphs. The equation is shown as {{{{ { q}_{p } = { K.A.Q} over { { T}_{p } } }}}} or {{{{ { q}_{p } = { 0.21A.Q} over { { T}_{p } } }}}} The constant 0.21 is defined to Nak Dong River basin. 11. The base length of the time-area diagram for the IUH routing is {{{{C=0.9 {( { L. { L}_{ca } } over { SQRT { s} } ) }^{1/3 } }}}}. Correlation coefficient for C was 0.983 which defined a high significance. The base length of the T-AD was set to equal the time from the midpoint of rain fall excess to the point of contraflexure. The constant K, derived in this studies is K=8.32+0.0213 {{{{ { L} over { SQRT { s} } }}}} with correlation coefficient, 0.964. 12. In the light of the results analysed in these studies, average errors in the peak discharge of the Synthetic unitgraph, Triangular unitgraph, and IUH were estimated as 2.2, 7.7 and 6.4 per cent respectively to the peak of observed average unitgraph. Each ordinate of the Synthetic unitgraph was approached closely to the observed one.

  • PDF

SVM을 이용한 시스템트레이딩전략의 선택모형 (Selection Model of System Trading Strategies using SVM)

  • 박성철;김선웅;최흥식
    • 지능정보연구
    • /
    • 제20권2호
    • /
    • pp.59-71
    • /
    • 2014
  • KOSPI200 선물 트레이딩을 위해 업계에서는 여러 전략으로 포트폴리오를 구성해서 운용한다. 동일한 전략 모음을 갖고 있더라도 포트폴리오를 어떻게 구성하느냐에 따라 수익은 크게 차이가 난다. 시장 상황에 맞는 전략들로 포트폴리오를 구성하는 것은 오랜 경험과 탁월한 노하우가 있어야하는 어려운 작업이다. 본 논문에서는 SVM을 활용하여 쉽고 빠르게 적절한 전략 포트폴리오를 구성하는 방법을 제시하였다. 본 논문에서 제안한 시스템의 성과는 벤치마킹의 성과와 비교하여 2배 이상의 수익을 내는 것을 확인하였다. 1990.01.03~2011.11.04 동안의 KOSPI200 데이터 중 이전 80%의 데이터로 학습을 하고 최근 20%의 데이터로 성능을 시험하였다. 각 전략별로 선택여부를 판별하는 SVM모델을 만들고 그 결과를 바탕으로 포트폴리오를 구성하였다. 벤치마킹을 위해 KOSPI200 선물을 2계약 매수한 경우의 수익, 시험 시작 직전 30일간 최고 수익을 낸 2개 전략의 수익, 실제 최고 수익을 낸 전략 2개를 보유했을 때의 수익과 비교하였다. 매매 비용을 반영하지 않을 때는 벤치마킹은 132.2~510.37pt의 수익을 냈고, 본 시스템은 1072.36~1140.91pt의 수익을 보여주었다. 그리고 거래비용을 감안하면 벤치마킹은 130.44~502.41pt의 수익을 냈고, 본 시스템은 706.22pt~768.95pt의 수익을 나타내었다. 본 논문은 기계학습을 통한 전략 포트폴리오를 구성하는 방안이 유의미하며 실전에 활용할 수 있음을 보여주었다. 이를 바탕으로 여러 전략과 다양한 시장에 적용해서 안정성을 검증하면 견고한 상용 솔루션으로 발전시킬 수 있을 것이다. 그리고 자금관리 기법을 더 반영한다면 수익을 더욱 크게 향상시킬 수 있을 것이다.