• Title/Summary/Keyword: Channel reallocation

Search Result 13, Processing Time 0.02 seconds

Channel Real location Methodologies for Restorable Transmission Networks

  • Joo, Un-Gi
    • Management Science and Financial Engineering
    • /
    • v.9 no.1
    • /
    • pp.29-49
    • /
    • 2003
  • This paper develops channel reallocation methodologies for survival transmission networks, Any failure on a high-speed telecommunication network needs to be restored rapidly and a channel real-location methodology has an important role for the fast restoration. This paper considers the channel reallocation problems under a line restoration with distributed control, where the line restoration restores the failed channels by rerouting the channels along the two alternative routes. The objective is to determine the optimal number of rerouting channels on the alternative rerouting paths of a given transmission network, where the optimality criteria are the first, the last and the mean restoration times. For each criterion, the problem is formulated as a mixed integer programming and the optimal channel reallocation algorithm is suggested based upon the characterization of the optimal solution.

Signal processing algorithm for converting variable bandwidth in the multiple channel systems (다중채널 시스템에서 가변 대역폭 절환을 위한 신호처리 알고리즘)

  • Yoo, Jae-Ho;Kim, Hyeon-Su;Choi, Dong-Hyun;Chung, Jae-Hak
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.1
    • /
    • pp.32-37
    • /
    • 2010
  • The algorithm of multiple channel signal processing requires the flexibility of variable frequency band, efficient allocation of transmission power, and flexible frequency band reallocation to satisfy various service types which requires different transmission rates and frequency band. There are three methods including per-channel approach, multiple tree approach, and block approach performing frequency band reallocation method by channelization and dechannelization in the multiple-channel signal. This paper proposes an improved per-channel approach for converting the frequency band of multiple carrier signals efficiently. The proposed algorithm performs decimation and interpolation using CIC(cascaded integrator comb filter), half-band filter, and FIR filter. In addition, it performs filtering of each sub-channel, and reallocates channel band through FIR low-pass filter in the multiple-channel signal. The computer simulation result shows that the perfect reconstruction of output signal and the flexible frequency band reallocation is performed efficiently by the proposed algorithm.

Analysis of Receiving Environment Changes According to Channel Reallocation Method of Terrestrial DMB (지상파 DMB 채널 재배치 방안에 따른 송수신환경 변화 분석)

  • Kim, Joo-Seok;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.6
    • /
    • pp.195-202
    • /
    • 2013
  • Many communications and broadcast media have emerged by the rapid development of wireless communication and broadcasting technologies, so the radio resources are insufficient for these services. DMB can use the regional integrated channel due to the SFN broadcasting network, so DMB uses the frequency efficiently. However, the domestic DMB uses the existing analog TV frequency band and uses a plurality of channels in some areas because of the interference with the analog TV. However, the broadcasting of the analog TV was terminated, so the channel reallocation of the terrestial DMB is necessary for the efficient use of frequencies. This paper proposes the channel reallocation method of the terrestial DMB and analyzes the change of transmission and reception environments by using simulations.

Efficient Dynamic Channel Assignment Scheme for Cellular Mobile Systems (이동통신시스템의 성능 개선을 위한 동적채널할당체계)

  • Chang, Kun-Nyeong
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.22 no.4
    • /
    • pp.173-182
    • /
    • 1997
  • In this paper, an efficient dynamic channel assignment scheme is suggested, which consists of two types of channel allocation strategies : ordinary channel allocation strategy and channel reallocation strategy. An analysis on the handoff probabilities of handoff and new calls is also performed, and using the analyzed handoff probability, the presented scheme is compared with other existing schemes in terms of three types of blocking probabilities- new call blocking probability, handoff call blocking probability, and network blocking probability (incomplete service probability). Simulation results show that the presented scheme significantly reduces those blocking probabilities over the existing schemes. Furthermore, the scheme has much smaller number of reallocation than other schemes.

  • PDF

Feasibility study on a stabilization method based on full spectrum reallocation for spectra having non-identical momentum features

  • Kilyoung Ko ;Wonku Kim ;Hyunwoong Choi;Gyuseong Cho
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2432-2437
    • /
    • 2023
  • Methodology for suppressing or recovering the distorted spectra, which may occur due to mutual non-uniformity and nonlinear response when a multi-detector is simultaneously operated for gamma spectroscopy, is presented with respect to its applicability to stabilization of spectra having the non-identical feature using modified full spectrum reallocation method. The modified full-spectrum reallocation method is extended to provide multiple coefficients that describe the gain drift for multi-division of the spectrum and they were incorporated into an optimization process utilizing a random sampling algorithm. Significant performance improvements were observed with the use of multiple coefficients for solving partial peak dislocation. In this study, our achievements to confirm the stabilization of spectrum having differences in moments and modify the full spectrum reallocation method provide the feasibility of the method and ways to minimize the implication of the non-linear responses normally associated with inherent characteristics of the detector system. We believe that this study will not only simplify the calibration process by using an identical response curve but will also contribute to simplifying data pre-processing for various studies as all spectra can be stabilized with identical channel widths and numbers.

Time Domain Multiple-channel Signal Processing Method for Converting the Variable Frequency Band (가변 주파수 변환을 위한 시간 영역 다중채널 신호처리 알고리즘)

  • Yoo, Jae-Ho;Kim, Hyeon-Su;Lee, Kyu-Ha;Lee, Jung-Sub;Chung, Jae-Hak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1A
    • /
    • pp.71-79
    • /
    • 2010
  • The algorithm of multiple channel signal processing requires the flexibility of variable frequency band, efficient allocation of transmission power, and flexible frequency band reallocation to satisfy various service types which requires different transmission rates and frequency band. This paper proposes an improved multiple channel signal processing for converting the frequency band of multiple carrier signals efficiently using a window function and DFT in the time domain. In contrast to the previous algorithm of multiple-channel signal processing performing band-pass signal processing in the frequency domain, the proposed algorithm is a method of block signal processing using a window function in the time domain. In addition, the complexity of proposed algorithm of the window function is lower than that of the previous algorithm performing signal processing in the frequency domain, and it performs the frequency band transform efficiently. The computer simulation result shows that the perfect reconstruction of output signal and the flexible frequency band reallocation is performed efficiently by the proposed algorithm.

Call Admission Schemes for Multimedia Services in CDMA Cellular Systems (셀룰라 시스템에서 멀티미디어 서비스를 위한 호 수락제어 기법 연구)

  • Choi Sung-Gu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3B
    • /
    • pp.232-238
    • /
    • 2006
  • We propose a novel call admission control scheme which improves the handoff drop and the new call block probabilities of high priority services, minimizing the negative impact on low priority services, in multimedia service cellular networks. This paper proposes three schemes to solve this problem; the packing scheme in which available channels of a cell distributed to each frequency channel are concentrated on one frequency channel and a high transmission rate service is assigned to the frequency channel; the queuing scheme in which the queue is used for high transmission rate calls; and the power reallocation scheme in which the power assigned to calls under service is temporarily reduced and a high transmission rate service is allowed. The simulation results revealed that our scheme improved the drop and the block probabilities of the high priority services compared with the conventional scheme.

A Performance Improvement of Cognitive User by Using Bandwidth Reallocation in Cognitive Radio Systems (인지 라디오 시스템에서 대역폭 재할당을 이용한 인지 사용자의 성능향상)

  • Lee, Jin-Yi
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.5
    • /
    • pp.415-420
    • /
    • 2014
  • Another crucial issue is a providing secondary user(SU) with the its guaranteed quality of service(QoS) in cognitive radio systems, from the SU view to be allowed to opportunistically utilize the primary user(PU) spectrum on non-interfering. In this paper, we propose a bandwidth reallocation scheme for reducing SU dropping rate through renegotiation of requested channel numbers when available bandwidth is not enough for accepting the spectrum handoff SUs. We categorize SU calls into two types : the first priority and the second priority SU, and the first SU' service is supported by bandwidth reservation based on ARMA prediction model for PU arrivals, while the second SU's bandwidth demands for spectrum handoff is to be reallocated through their renegotiation. Simulation results show that our scheme can improve SU dropping rate and system resource utilization efficiency by bandwidth reallocation.

A Group Search-based Distributed Dynamic Channel Allocation Algorithm in Uplink Cellular System (상향링크 셀룰러 시스템에서 그룹 탐색 기반의 분산동적채널할당 방법)

  • Yoo, Doh-Kyoung;Kim, Dong-Hoi
    • Journal of Broadcast Engineering
    • /
    • v.15 no.3
    • /
    • pp.407-413
    • /
    • 2010
  • In DCA (Dynamic Channel Allocation) scheme of uplink cellular system appling a frequency reuse factor of one, when a new call requests a channel, the new call will be blocked if its SINR (Carrier to Noise and Interference Ratio) is less than the required SINR or there is no available channel. The additional channel allocation for the blocked new call can be performed with channel borrowing in the adjacent cells. The channel borrowing causes the CCI (Co-Channel Interference), thus the SINR of the existing calls is deteriorated and the channel reallocation for the existing calls is required. As a result, the channel borrowing leads to a complex calculation so that it is a NP-hard problem. Therefore, to overcome the problem, we propose a novel Group Search-based DCA scheme which decreases the number of the blocked new calls and then reduces the number of the channel reallocation by the channel borrowing for the blocked new calls. The proposed scheme searches the all channels in a group of the adjacent cells and home cell at the same time in order to minimizes the number of the blocked new calls. The simulation results show that proposed Group Search-based DCA scheme provides better new call blocking probability and system throughput than the existing Single Search-based DCA scheme which searches only the channels in home cell.

Simultaneous Information and Power Transfer Using Magnetic Resonance

  • Lee, Kisong;Cho, Dong-Ho
    • ETRI Journal
    • /
    • v.36 no.5
    • /
    • pp.808-818
    • /
    • 2014
  • To deal with the major challenges of embedded sensor networks, we consider the use of magnetic fields as a means of reliably transferring both information and power to embedded sensors. We focus on a power allocation strategy for an orthogonal frequency-division multiplexing system to maximize the transferred power under the required information capacity and total available power constraints. First, we consider the case of a co-receiver, where information and power can be extracted from the same signal. In this case, we find an optimal power allocation (OPA) and provide the upper bound of achievable transferred power and capacity pairs. However, the exact calculation of the OPA is computationally complex. Thus, we propose a low-complexity power reallocation algorithm. For practical consideration, we consider the case of a separated receiver (where information and power are transferred separately through different resources) and propose two heuristic power allocation algorithms. Through simulations using the Agilent Advanced Design System and Ansoft High Frequency Structure Simulator, we validate the magnetic-inductive channel characteristic. In addition, we show the performances of the proposed algorithms by providing achievable ${\eta}$-C regions.