• Title/Summary/Keyword: Channel networks

Search Result 1,812, Processing Time 0.029 seconds

Analysis of Channel Access Delay in CR-MAC Protocol for Ad Hoc Cognitive Radio Wireless Sensor Networks without a Common Control Channel

  • Joshi, Gyanendra Prasad;Nam, Seung Yeob;Acharya, Srijana;Kim, Sung Won
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.911-923
    • /
    • 2014
  • Ad hoc cognitive radio wireless sensor networks allow secondary wireless sensor nodes to recognize spectrum opportunities and transmit data. Most existing protocols proposed for ad hoc cognitive radio wireless sensor networks require a dedicated common control channel. Allocating one channel just for control packet exchange is a waste of resources for channel-constrained networks. There are very few protocols that do not rely on a common control channel and that exchange channel-negotiation control packets during a pre-allocated time on the data channels. This, however, can require a substantial amount of time to access the channel when an incumbent is present on the channel, where the nodes are intended to negotiate for the data channel. This study examined channel access delay on cognitive radio wireless sensor networks that have no dedicated common control channel.

Channel Allocation in Multi-radio Multi-channel Wireless Mesh Networks: A Categorized Survey

  • Iqbal, Saleem;Abdullah, Abdul Hanan;Hussain, Khalid;Ahsan, Faraz
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1642-1661
    • /
    • 2015
  • Wireless mesh networks are a special type of broadcast networks which cover the qualifications of both ad-hoc as well as infrastructure mode networks. These networks offer connectivity to the last mile through hop to hop communication and by comparatively reducing the cost of infrastructure in terms of wire and hardware. Channel assignment has always been the focused area for such networks specifically when using non-overlapping channels and sharing radio frequency spectrum while using multiple radios. It has always been a challenge for mesh network on impartial utilization of the resources (channels), with the increase in users. The rational utilization of multiple channels and multiple radios, not only increases the overall throughput, capacity and scalability, but also creates significant complexities for channel assignment methods. For a better understanding of research challenges, this paper discusses heuristic methods, measurements and channel utilization applications and also examines various researches that yield to overcome this problem. Finally, we highlight prospective directions of research.

A Novel Routing Algorithm Based on Load Balancing for Multi-Channel Wireless Mesh Networks

  • Liu, Chun-Xiao;Chang, Gui-Ran;Jia, Jie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.651-669
    • /
    • 2013
  • In this paper, we study a novel routing algorithm based on load balancing for multi-channel wireless mesh networks. In order to increase the network capacity and reduce the interference of transmission streams and the communication delay, on the basis of weighted cumulative expected transmission time (WCETT) routing metric this paper proposes an improved routing metric based on load balancing and channel interference (LBI_WCETT), which considers the channel interference, channel diversity, link load and the latency brought by channel switching. Meanwhile, in order to utilize the multi-channel strategy efficiently in wireless mesh networks, a new channel allocation algorithm is proposed. This channel allocation algorithm utilizes the conflict graph model and considers the initial link load estimation and the potential interference of the link to assign a channel for each link in the wireless mesh network. It also utilizes the channel utilization percentage of the virtual link in its interference range as the channel selection standard. Simulation results show that the LBI_WCETT routing metric can help increase the network capacity effectively, reduce the average end to end delay, and improve the network performance.

A Rate Separating Multi-Channel Protocol for Improving Channel Diversity and Node Connectivity in IEEE 802.11 Mesh Networks (IEEE 802.11 메쉬 네트워크에서 채널 다양성과 노드 연결성 향상을 위한 레이트 분할 멀티 채널 프로토콜)

  • Kim, Sok-Hyong;Suh, Young-Joo;Kwon, Dong-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12A
    • /
    • pp.1152-1159
    • /
    • 2010
  • Wireless Mesh Networks (WMNs) provides Internet accesses to users by forming backbone networks via wireless links. A key problem of WMN is network capacity. For this, multi-channel and multi-rate functions of IEEE 802.11 can be utilized. Depending on channel assignments, multi-channel determines node connectivity and channel diversity. Also, in IEEE 802.11 multi-rate networks, the rate anomaly problem occurs, the phenomenon that low-rate links degrades the performance of high-rate links. In this paper, we propose rate separating multi-channel (RSMC) protocols that improves the node connectivity and channel diversity, and mitigates the rate anomaly problem. RSMC increases the channel diversity by forming tree-based WMNs and decreases the rate anomaly by separating different rate links on the tree via channels. In addition, it uses network connectivity (NC) algorithm to increase the node connectivity. Through simulations, we demonstrate that the RSMC shows improved performance than existing multi-channel protocols in terms of aggregate throughput, node connectivity, channel diversity.

Game-Theoretic Optimization of Common Control Channel Establishment for Spectrum Efficiency in Cognitive Small Cell Network

  • Jiao Yan
    • International journal of advanced smart convergence
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • Cognitive small cell networks, consisting of macro-cells and small cells, are foreseen as a promising candidate solution to address 5G spectrum scarcity. Recently, many technological issues (such as spectrum sensing, spectrum sharing) related to cognitive small cell networks have been studied, but the common control channel (CCC) establishment problem has been ignored. CCC is an indispensable medium for control message exchange that could have a huge significant on transmitter-receiver handshake, channel access negotiation, topology change, and routing information updates, etc. Therefore, establishing CCC in cognitive small cell networks is a challenging problem. In this paper, we propose a potential game theory-based approach for CCC establishment in cognitive radio networks. We design a utility function and demonstrate that it is an exact potential game with a pure Nash equilibrium. To maintain the common control channel list (CCL), we develop a CCC update algorithm. The simulation results demonstrate that the proposed approach has good convergence. On the other hand, it exhibits good delay and overhead of all networks.

Channel Capacity Analysis for Indoor PLC Networks with Considering the Effect of Loading conditions of Networks on Channel State Information (네트워크 부하 조건의 변화가 채널 상태 정보에 미치는 영향을 고려한 옥내 전력선 통신 채널의 채널 용량 분석)

  • Shin, Jae-Young;Jeong, Ji-Chai
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.252-256
    • /
    • 2011
  • We analyze the channel capacity with considering the effect of the loading conditions of indoor PLC networks on channel state information. We consider various numbers of load for two kinds of the networks with regular length branches and a deployed network of indoor PLC. For calculating the channel capacity degradation, two noise scenarios and impedances are considered. From the simulation results, we suggest the robust regression lines for modeling the channel capacity degradation. In the cases of 0 $\Omega$ and $Z_0$ loads, natural log and linear function curve show the best goodness of fit, respectively. For the deployed indoor PLC network with 0 $\Omega$ loads, compared with the networks with regular length branches, the goodness of fit decreases by the amount of 0.12 and 0.15 for low noise and high noise scenarios, respectively. Using the regression lines, we can estimate the channel capacity degradation without measurement.

Channel Assignment and Routing using Traffic Profiles in Wireless Mesh Networks (무선 메쉬 네트워크에서 트래픽 프로파일을 고려하는 채널 할당 및 라우팅)

  • Park, Sook-Young;Lee, Sang-Kyu
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.5
    • /
    • pp.374-385
    • /
    • 2010
  • Wireless mesh networks can be deployed for various networks from home networking to last-mile broadband Internet access. Wireless mesh networks are composed of mesh routers and mesh clients. In these networks, static nodes form a multi-hop backbone of a large wireless access network that provides connectivity to end-users' mobile terminals. The network nodes cooperate with each other to relay data traffic to its destinations. In order to increase connectivity and better performance, researchers are getting interested in multi-channel and multi-interface wireless mesh networks. In these networks, non-overlapping multiple frequency channels are used simultaneously to increase the aggregate bandwidth available to end-users. Recently, researches have focused on finding suitable channel assignments for wireless network interfaces, equiped in a mesh node, together with efficient routing to improve overall system throughput in wireless mesh networks. This goal can be achieved by minimize channel interference. Less interference among using channels in a network guarantees more aggregated channel capacity and better connectivity of the networks. In this thesis, we propose interference aware channel assignment and routing algorithms for multi-channel multi-hop wireless mesh networks. We propose Channel Assignment and Routing algorithms using Traffic Profiles(CARTP) and Routing algorithms allowing detour routing(CARTP+2). Finally, we evaluate the performance of proposed algorithms in comparison to results from previous methods using ns-2 simulations. The simulation results show that our proposed algorithms can enhance the overall network performance in wireless mesh networks.

Multiple Constraint Routing Protocol for Frequency Diversity Multi-channel Mesh Networks using Interference-based Channel Allocation

  • Torregoza, John Paul;Hwang, Won-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.12
    • /
    • pp.1632-1644
    • /
    • 2007
  • Wireless Mesh Networks aim to attain large connectivity with minimum performance degradation, as network size is increase. As such, scalability is one of the main characteristics of Wireless Mesh Networks that differentiates it from other wireless networks. This characteristic creates the need for bandwidth efficiency strategies to ensure that network performance does not degrade as the size of the network increase. Several researches have been done to realize mesh networks. However, the researches conducted were mostly focused on a per TCP/IP layer basis. Also, the studies on bandwidth efficiency and bandwidth improvement are usually dealt with as separate issues. This paper aims to simultaneously study bandwidth efficiency and improvement. Aside from optimizing the bandwidth given a fixed capacity, the capacity is also increased using results of physical layer studies. In this paper, the capacity is improved by using the concept of non-overlapping channels for wireless communication. A channel allocation scheme is conceptualized to choose the transmission channel that would optimize the network performance parameters with consideration of chosen Quality of Service (QoS) parameters. Network utility maximization is used to optimize the bandwidth after channel selection. Furthermore, a routing scheme is proposed using the results of the network utilization method and the channel allocation scheme to find the optimal path that would maximize the network gain.

  • PDF

Neural Networks for Adaptive Channel Equalizers (등화기로서의 신경회로망)

  • 최수용;홍대식
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.468-473
    • /
    • 1999
  • Neural networks for adaptive channel equalizers have been resorted to recently in digital communication systems. In this paper, the characteristics and the application areas and etc. for neural networks as adaptive channel equalizers are examined through simple examples.

  • PDF

Segment Training Based Individual Channel Estimation for Multi-pair Two-Way Relay Network with Power Allocation

  • He, Xiandeng;Zhou, Ronghua;Chen, Nan;Zhang, Shun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.566-578
    • /
    • 2018
  • In this paper, we design a segment training based individual channel estimation (STICE) scheme for the classical two-way relay network (TWRN) with multi-pair sources (MPS) and amplify-and-forward (AF). We adopt the linear minimum mean square error (LMMSE) channel estimator to minimize the mean square error (MSE) without channel estimation error, where the optimal power allocation strategy from the relay for different sources is obtained. Then the MSE gains are given with different source pairs among the proposed power allocation scheme and the existing power allocation schemes. Numerical results show that the proposed method outperforms the existing ones.