• Title/Summary/Keyword: Channel adaptation

Search Result 175, Processing Time 0.023 seconds

Multi-channel Long Short-Term Memory with Domain Knowledge for Context Awareness and User Intention

  • Cho, Dan-Bi;Lee, Hyun-Young;Kang, Seung-Shik
    • Journal of Information Processing Systems
    • /
    • v.17 no.5
    • /
    • pp.867-878
    • /
    • 2021
  • In context awareness and user intention tasks, dataset construction is expensive because specific domain data are required. Although pretraining with a large corpus can effectively resolve the issue of lack of data, it ignores domain knowledge. Herein, we concentrate on data domain knowledge while addressing data scarcity and accordingly propose a multi-channel long short-term memory (LSTM). Because multi-channel LSTM integrates pretrained vectors such as task and general knowledge, it effectively prevents catastrophic forgetting between vectors of task and general knowledge to represent the context as a set of features. To evaluate the proposed model with reference to the baseline model, which is a single-channel LSTM, we performed two tasks: voice phishing with context awareness and movie review sentiment classification. The results verified that multi-channel LSTM outperforms single-channel LSTM in both tasks. We further experimented on different multi-channel LSTMs depending on the domain and data size of general knowledge in the model and confirmed that the effect of multi-channel LSTM integrating the two types of knowledge from downstream task data and raw data to overcome the lack of data.

Machine-Learning-Based Link Adaptation for Energy-Efficient MIMO-OFDM Systems (MIMO-OFDM 시스템에서 에너지 효율성을 위한 기계 학습 기반 적응형 전송 기술 및 Feature Space 연구)

  • Oh, Myeung Suk;Kim, Gibum;Park, Hyuncheol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.5
    • /
    • pp.407-415
    • /
    • 2016
  • Recent wireless communication trends have emphasized the importance of energy-efficient transmission. In this paper, link adaptation with machine learning mechanism for maximum energy efficiency in multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) wireless system is considered. For reflecting frequency-selective MIMO-OFDM channels, two-dimensional capacity(2D-CAP) feature space is proposed. In addition, machine-learning-based bit and power adaptation(ML-BPA) algorithm that performs classification-based link adaptation is presented. Simulation results show that 2D-CAP feature space can represent channel conditions accurately and bring noticeable improvement in link adaptation performance. Compared with other feature spaces, including ordered postprocessing signal-to-noise ratio(ordSNR) feature space, 2D-CAP has distinguished advantages in either efficiency performance or computational complexity.

Iterative Symbol Decoding of Variable-Length Codes with Convolutional Codes

  • Wu, Hung-Tsai;Wu, Chun-Feng;Chang, Wen-Whei
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.40-49
    • /
    • 2016
  • In this paper, we present a symbol-level iterative source-channel decoding (ISCD) algorithm for reliable transmission of variable-length codes (VLCs). Firstly, an improved source a posteriori probability (APP) decoding approach is proposed for packetized variable-length encoded Markov sources. Also proposed is a recursive implementation based on a three-dimensional joint trellis for symbol decoding of binary convolutional codes. APP channel decoding on this joint trellis is realized by modification of the Bahl-Cocke-Jelinek-Raviv algorithm and adaptation to the non-stationary VLC trellis. Simulation results indicate that the proposed ISCD scheme allows to exchange between its constituent decoders the symbol-level extrinsic information and achieves high robustness against channel noises.

Transmit Antenna Selection for Dual Polarized Channel Using Singular Value Decision

  • Lee Sang-yub;Mun Cheol;Yook Jong-gwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9A
    • /
    • pp.788-794
    • /
    • 2005
  • In this paper, we focus on the potential of dual polarized antennas in mobile system. thus, this paper designs exact dual polarized channel with Spatial Channel Model (SCM) and investigates the performance for certain environment. Using proposed the channel model; we know estimates of the channel capacity as a function of cross polarization discrimination (XPD) and spatial fading correlation. It is important that the MIMO channel matrix consists of Kronecker product dividable spatial and polarized channel. Through the channel characteristics, we propose an algorithm for the adaptation of transmit antenna configuration to time varying propagation environments. The optimal active transmit antenna subset is determined with equal power allocated to the active transmit antennas, assuming no feedback information on types of the selected antennas. We first consider a heuristic decision strategy in which the optimal active transmit antenna subset and its system capacity are determined such that the transmission data rate is maximized among all possible types. This paper then proposes singular values decision procedure consisting of Kronecker product with spatial and polarize channel. This method of singular value decision, which the first channel environments is determined using singular values of spatial channel part which is made of environment parameters and distance between antennas. level of correlation. Then we will select antenna which have various polarization type. After spatial channel structure is decided, we contact polarization types which have considerable cases It is note that the proposed algorithms and analysis of dual polarized channel using SCM (Spatial Channel Model) optimize channel capacity and reduce the number of transmit antenna selection compare to heuristic method which has considerable 100 cases.

Link Adaptation with SNR Offset for Wireless LAN Systems (무선 LAN 시스템에서의 SNR 오프셋을 이용한 링크 적응화)

  • Kim, Chan-Hong;Jeong, Kyo-Won;Ko, Kyeong-Jun;Lee, Jung-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10A
    • /
    • pp.839-846
    • /
    • 2011
  • Link Adaptation should select the best modulation and coding scheme (MCS) which gives the highest throughput as channel conditions vary. Several link adaptation algorithms for wireless local area network (WLAN) have been proposed but for the future WLAN systems such as 802.11n system, these algorithms do not guarantee the best performance. In this paper, we propose a new link adaptation algorithm in which an MCS level is chosen by the received SNR plus the offset value obtained from the transmission results. The performance of proposed algorithm is simulated by an IEEE 802.11n system. From the analysis, we conclude the proposed algorithm performs better than the well-known link adaptation algorithms such as auto rate fallback and general SNR-based techniques. Particularly, the proposed algorithm improves throughput when the packet error ratio (PER) is constrained for fast fading channels.

Performance Evaluation of Bandwidth Efficient Adaptive QAM Schemes in Flat and Frquency Selective Fading Channels (균일 및 주파수 선택적 페이딩에서 대역폭 효율의 적응 QAM 성능분석)

  • 정연호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.10A
    • /
    • pp.1473-1479
    • /
    • 2000
  • This paper presents the performance evaluation of an adaptive QAM scheme under flat and frequency selective fading channels for indoor wireless communication systems. The QAM modulation is combined with differential encoding and the demodulation process is carried out noncoherently. The adaptation is performed by varying the modulation level of QAM, depending upon received signal strength. The adaptation mechanism allows a 2- or 3-bit increase or decrease at a time, if the channel condition is considered to be significantly good or bad. Simulation results show that the average number of bits per symbol (ABPS) for each symbol block transmitted over a flat fading channel is higher than 5.0 and the BER performance is better than 10^-4 for a SNR value higher than 30 dB. For frequency selective fading channels, an oversampling technique in the receiver was employed. The BER performance obtained for frequency selective fading channels is better than 10^-4 with a SNR value of 40 dB and ABPS is found to be approximately 5.5. Therefore, this scheme is very useful in that it provides both very high bandwidth efficiency and acceptable performance with moderate SNR values over flat and frequency selective fading channels. In addition, this scheme provides reduced receiver complexity by way of noncoherent detection.

  • PDF

Performance analysis of multiple access mechanism based on error adaptation in CDMA cellular system (CDMA 셀룰러 시스템용 오율 적응 다중 엑세스 기법의 성능분석)

  • 송상호;조동호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.3
    • /
    • pp.713-720
    • /
    • 1996
  • In recent, the demand of mobile communication system is increasing rapidly. However, since wireless resources is limitted, the protocol to utilize wireless resource efficiently is needed. Up to now, Slotted CDMA_ALOHA(S_CDMA_ALOHA) and Mini-Slotted CDMA_ALOHA(MS_CDMA_ALOHA) methods are proposed as a CDMA_ALOHA mechanism, and it is turned out that MS_CDMA_ALOHA offers betterperformance than S_CDMA_ALOHA mechanism. Also, IS-95 multiple access mechanism has been proposed as common air interface(CAI) protocol of CDMA digital cellular system. However, in former study, the performance evaluations were made without considertion of chnnel characteristics of wireless communication environment. In this paper, a new access mechanism for improring the performance in the DS/CDMA digital cellular environment is suggested. This mechanism is adaptive to the channel condition and based on the conventional MS_CDMA_ALOHA mechanism. Also, the performance of new access mechanism is compared with that of conventional mechanisms, through computer simulation. According tot h simulation results, it is shown that the proposed NA_CDMA_ALOHA(Noise-Adaptation CDMA_ALOHA) mechanism offers better performance than conventional three CDMA_ALOHA mechanisms in view of mean delay time and system throughput characteristics. This phenomenon is due to the fast that NA_CDMA_ALOHA mechanism controls the access attempts efficiently based on the channel condition in heavy traffic environments.

  • PDF

Adaptive cancellation method for suppression of adjacent channel interference (인접 채널 간섭 억제를 위한 적응제거 기법)

  • Lee, Jong-Gil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.591-592
    • /
    • 2010
  • The strong adjacent interference in the receiver channel may cause difficulties in recovering the signal and also it degrades the system performance very seriously. Therefore, in this paper, the cancellation method was investigated to minimize these interference effects. It was supposed that the strong transmission power was leaked into the receiver channel. the usual LMS algorithm was applied for cancellation. Weight coefficients for adaptation converged very fast within 10 micro seconds and it showed the cancellation capability of 50dB approximately.

  • PDF

A Case Study of the Meteorological Industry for the Media in the USA for Promotion of Private Sector Meteorological Industry in the Republic of Korea : Based on The Weather Channel Case (우리나라 민간 기상 산업 육성을 위한 미국의 기상 미디어 산업 연구 - 웨더채널 사례를 중심으로)

  • Song, Byunghyun
    • Atmosphere
    • /
    • v.24 no.2
    • /
    • pp.253-263
    • /
    • 2014
  • The Korea Meteorological Administration has recently focused on the promotion of the meteorological industry in the private sector. Broadcast meteorology has provided the main source of income to the Meteorological industry in the United States with The Weather Channel (TWC) being the most prominent enterprise. TWC has 31 years of history and has become an icon of innovation in the U.S. meteorological industry. TWC's success story was reviewed for the possible adaptation of Korea's meteorological media industry. Expected roles for public, academic, and private sectors were suggested for boosting industrial meteorology for the media at present and in the future.

An Adaptive Contention Windows Adjustment Scheme Based on the Access Category for OnBord-Unit in IEEE 802.11p (IEEE 802.11p에서 차량단말기간에 혼잡상황 해결을 위한 동적 충돌 윈도우 향상 기법)

  • Park, Hyun-Moon;Park, Soo-Hyun;Lee, Seung-Joo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.6
    • /
    • pp.28-39
    • /
    • 2010
  • The study aims at offering a solution to the problems of transmission delay and data throughput decrease as the number of contending On-Board Units (OBU) increases by applying CSMA medium access control protocol based upon IEEE 802.11p. In a competition-based medium, contention probability becomes high as OBU increases. In order to improve the performance of this medium access layer, the author proposes EDCA which a adaptive adjustment of the Contention Windows (CW) considering traffic density and data type. EDCA applies fixed values of Minimum Contention Window (CWmin) and Maximum Contention Window (CWmax) for each of four kinds of Access Categories (AC) for channel-specific service differentiation. EDCA does not guarantee the channel-specific features and network state whereas it guarantees inter-AC differentiation by classifying into traffic features. Thus it is not possible to actively respond to a contention caused by network congestion occurring in a short moment in channel. As a solution, CWminAS(CWmin Adaptation Scheme) and ACATICT(Adaptive Contention window Adjustment Technique based on Individual Class Traffic) are proposed as active CW control techniques. In previous researches, the contention probabilities for each value of AC were not examined or a single channel based AC value was considered. And the channel-specific demands of IEEE 802.11p and the corresponding contention probabilities were not reflected in the studies. The study considers the collision number of a previous service section and the current network congestion proposes a dynamic control technique ACCW(Adaptive Control of Contention windows in considering the WAVE situation) for CW of the next channel.