• Title/Summary/Keyword: Channel activity

Search Result 580, Processing Time 0.029 seconds

Relationship of the Signal Transduction-mediated Proteins and Enzymes to Contractility and Plasticity in Skeletal Muscles (골격근의 수축과 가소성에 대한 신호전달-매개 단백질 및 관련 효소의 상관성)

  • Kim, Jung-Hwan
    • The Journal of Korean Physical Therapy
    • /
    • v.19 no.4
    • /
    • pp.1-14
    • /
    • 2007
  • Background: It is generally accepted that skeletal muscle contraction is triggered by nerve impulse and intracellular $Ca^{2+}\;([Ca^{2+}]_i)$ released from intracellular $Ca^{2+}$ stores such as sarcoplasmic reticulum (SR). Specifically, this process, called excitation-contraction (E-C) coupling, takes place at intracellular junctions between the plasma membrane, the transverse (T) tubule L-type $Ca^{2+}$ channel (dihydropyridine-sensitive L-rype $Ca^{2+}$ channel, DHPR, also called tetrads), and the SR $Ca^{2+}$ release channel (ryanodine-sensitive $Ca^{2+}$ release channel, RyR, also called feet) of internal $Ca^{2+}$ stores in skeletal muscle cells. Furthermore, it has been reported that the $Ca^{2+-}$ dependent and -independent contraction determine the expression of skeletal muscle genes, thus providing a mechanism for tightly coupling the extent of muscle contraction to regulation of muscle plasticity-related excitation-transcription (E-T) coupling. Purpose: Expression and activity of plasticity-associated enzymes in gastrocnemius muscle strips have not been well studied, however. Methods: Therefore, in this study the expression and phosphorylation of E-C and E-T coupling-related mediators such as protein kinases, ROS(reactive oxygen species)- and apoptosis-related substances, and others in gastrocnemius muscles from rats was examined. Results: I found that expression and activity of MAPKs (mitogen-activated protein kinases, ERK1/2, p38MAPK, and SAPK/JNK), apoptotic proteins (cleaved caspase-3, cytochrome c, Ref-1, Bad), small GTP-binding proteins (RhoA and Cdc42), actin-binding protein (cofilin), PKC (protein kinase C) and $Ca^{2+}$ channel (transient receptor potential channel 6, TRPC6) was observed in rat gastrocnemius muscle strips. Conclusion: These results suggest that MAPKs, ROS- and apoptosis-related enzymes, cytoskeleton-regulated proteins, and $Ca^{2+}$ channel may in part functionally import in E-C and E-T coupling from rat skeletal muscles.

  • PDF

The effect of flavonoids on the TREK-1 channel (TREK-1 채널에 대한 플라보노이드의 효과)

  • Kim, Yang-Mi;Kim, Kyung-Ah
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2660-2667
    • /
    • 2011
  • TREK-1 channel is a member of the two-pore domain potassium (K2P) channel family that is regulated by intracellular pH, membrane stretch, polyunsaturated fatty acids, temperature, and some neuroprotectant agents. TREK-1 channel can influence neuronal excitability by regulating leakage of potassium ions and resting membrane potential. TREK-1 channel has been shown to be overexpressed in prostate cancer cells. Although the importance of these properties, relatively little is known about flavonoid effects in the regulations of TREK-1 channel. The purpose of the study was to screening of flavonoids as the TREK-1 channel modulator using one of electrophysiological techniques such as excised inside-out patch configuration. We demonstrated blocking effect on TREK-1 channel by flavonoids such as epigallocatechin-3-gallate (EGCG), curcumin and quercetin in CHO cells transiently expressing TREK-1 channel. The inhibition of TREK-1 channel by quercetin and curcumin was reversible, whereas EGCG was little reversible. Quercetin, EGCG and curcumin decreased the relative channel activity to 73%, 91% and 94%, respectively. The half-inhibitory concentration (IC50) of curcumin, quercetin and EGCG was $1.04{\pm}0.19\;{\mu}M$, $1.13{\pm}0.26\;{\mu}M$ and $13.5{\pm}2.20\;{\mu}M$ in CHO cells expressing TREK-1 channel, respectively. These results indicate that flavonoids might regulate TREK-1 and this regulation might be one of the pharmacological actions of flavonoid in nervous systems and cancer cells.

ATP Modulation of Cloned Rat Brain Large-conductance $Ca^{2+}$-activated $K^+$ Channel by Protein Phosphorylation

  • Park, S.Y.;S. Chung
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1999.06a
    • /
    • pp.63-63
    • /
    • 1999
  • Large conductance $Ca^{2+}$-activated $K^{+}$ channels (Maxi-K channel) have been implicated in many important physiological processes such as co-ordination of membrane excitability in neurons. Modulation of these channels are archived by the activity of various protein kinases. The most widely studied example of Maxi-K channel regulation by protein phosphorylation has been obtained using plasma membranes from the rat brain incorporated into lipid bilayers.(omitted)

  • PDF

Calcium Channel-blocking Activity of Chinese Balloon Flower (Platycodon grandiflorum) for Producing Blood Pressure-lowering Functional Foods

  • Kang, Yoon-Seok;Hong, Kwon-Pyo;Jung, Dong-Chae;Hong, Sung-Won;Lee, Jun-Ho;Nah, Seung-Yeal;Lim, Yoong-Ho;Bae, Dong-Ho
    • Food Science and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.156-160
    • /
    • 2008
  • This study was conducted to evaluate the hypotensive properties of the extract of Chinese balloon flower (Platycodon grandiflorum)'s root. In the studies for calcium channel-blocking using Xenopus oocytes, the ethanol-extract ($26.2{\pm}5.2%$) showed higher activity than water-extract. Twenty female rats were fed 25, 35, and 45 mg/kg BW/day of the ethanol-extract for 14 days to observe the changes in blood pressures and heart pulses. Ethanol-extract decreased the systolic, diastolic, and mean blood pressures of the rats. Especially, the rats fed with 45 mg/kg BW/day of the ethanol-extract showed significant decreases in the blood pressures. These results suggested that a decrease in blood pressures was due to the extension of a blood vessel with calcium channel-blocking by ethanol-extract of Chinese balloon flower. Forty %-ethanol showed the highest efficiency for ethanol-extraction of Chinese balloon flower.

A Oriental Medical Study on the Castanea mollissima Bl. (율(栗)에 대(對)한 한의학적(韓醫學的) 문헌고찰(文獻考察))

  • Lee Soo-Jin;Kim Myung-Dong;Nam Young-Jae
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.4 no.1
    • /
    • pp.122-131
    • /
    • 2000
  • This dissertation is try to figure out why chestnut belongs to kidney channel, from the viewpoint of five elements theory. After studying chestnut's property, flavor, channel tropism, main cure ability, prescriptions, shape, sweet, and prohibitions, I came to the following results. 1. Property of chestnut is warm and has no toxicity, so it is less related than kidney property. 2. Flavor of chestnut is salty and sweet, so it has some relation to kidney and spleen properties. 3. Channel tropism of chestnut enters mainly into kidney channel, and then spleen and stomach channels. 4. Chestnut controls kidney function of storing the essence of life, determining the condition of bone and marrow, conduction water metabolism, affecting reasoning activity, and controls activity of nine openings of body. It also has effects on functions of spleen, intestines and stomach. 5. Prescriptions including chestnut is similar to that of human brain, it is possible to reason out that chestnut has some relation to human brain. 7. As flavor of chestnut flower is similar to that of spermatic fluid, so it has som relation to kidney property. 8. As chestnut has property of blocking qi and it causes spleen, stomach and colon system to be confused, so it is suggested that persons with weakende spleen and stomach be not allowed to take in.

  • PDF

Negative self-regulation of transient receptor potential canonical 4 by the specific interaction with phospholipase C-δ1

  • Juyeon Ko;Jinhyeong Kim;Jongyun Myeong;Misun Kwak;Insuk So
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.2
    • /
    • pp.187-196
    • /
    • 2023
  • Transient receptor potential canonical (TRPC) channels are non-selective calcium-permeable cation channels. It is suggested that TRPC4β is regulated by phospholipase C (PLC) signaling and is especially maintained by phosphatidylinositol 4,5-bisphosphate (PIP2). In this study, we present the regulation mechanism of the TRPC4 channel with PIP2 hydrolysis which is mediated by a channel-bound PLCδ1 but not by the GqPCR signaling pathway. Our electrophysiological recordings demonstrate that the Ca2+ via an open TRPC4 channel activates PLCδ1 in the physiological range, and it causes the decrease of current amplitude. The existence of PLCδ1 accelerated PIP2 depletion when the channel was activated by an agonist. Interestingly, PLCδ1 mutants which have lost the ability to regulate PIP2 level failed to reduce the TRPC4 current amplitude. Our results demonstrate that TRPC4 self-regulates its activity by allowing Ca2+ ions into the cell and promoting the PIP2 hydrolyzing activity of PLCδ1.

Differential effects of ginsenoside metabolites on slowly activating delayed rectifier K+ and KCNQ1 K+ channel currents

  • Choi, Sun-Hye;Lee, Byung-Hwan;Kim, Hyeon-Joong;Jung, Seok-Won;Hwang, Sung-Hee;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.37 no.3
    • /
    • pp.324-331
    • /
    • 2013
  • Channels formed by the co-assembly of the KCNQ1 subunit and the mink (KCNE1) subunit underline the slowly activating delayed rectifier $K^+$ channels ($I_{Ks}$) in the heart. This $K^+$ channel is one of the main pharmacological targets for the development of drugs against cardiovascular disease. Panax ginseng has been shown to exhibit beneficial cardiovascular effects. In a previous study, we showed that ginsenoside Rg3 activates human KCNQ1 $K^+$ channel currents through interactions with the K318 and V319 residues. However, little is known about the effects of ginsenoside metabolites on KCNQ1 $K^+$ alone or the KCNQ1 + KCNE1 $K^+$ ($I_{Ks}$) channels. In the present study, we examined the effect of protopanaxatriol (PPT) and compound K (CK) on KCNQ1 $K^+$ and $I_{Ks}$ channel activity expressed in Xenopus oocytes. PPT more strongly inhibited the $I_{Ks}$ channel currents than the currents of KCNQ1 $K^+$ alone in concentration- and voltage-dependent manners. The $IC_{50}$ values on $I_{Ks}$ and KCNQ1 alone currents for PPT were $5.18{\pm}0.13$ and $10.04{\pm}0.17{\mu}M$, respectively. PPT caused a leftward shift in the activation curve of $I_{Ks}$ channel activity, but minimally affected KCNQ1 alone. CK exhibited slight inhibition on $I_{Ks}$ and KCNQ1 alone $K^+$ channel currents. These results indicate that ginsenoside metabolites show limited effects on $I_{Ks}$ channel activity, depending on the structure of the ginsenoside metabolites.

Anti-pseudomonal Activity of DA-1131, A New Carbapenem Antibiotic

  • Kim, Gye-Won;Kim, Ji-Young;Park, Seong-Hak;Lim, Joong-In;Kim, Won-Bae;Junnick Yang
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.236-236
    • /
    • 1996
  • DA-1131은 IPM이 D2 channel 특이적인 세포외막투과성을 나타내는 것과는 달리 D2 channel 이외에 azthreonam 투과경로도 이용하는 것으로 확인되었다. IPM 감수성 및 내성인 P aeruginosa 균주들에 대하여 $\beta$-lactamase의 inducible activity, hydrolytic susceptibility, affinity를 측정한 결과, Inducible activity는 DA-1131, PPM 및 MEPM이 거의 동일하였으며, 3가지 약물 모두 가수분해에 대한 안정성을 나타내었다. 그러나 $\beta$-lactamase에 대한 affinity는 IPM이 가장 컸고, MEPM, DA-1131의 순으로 감소하였다. DA-1131은 P8P2와 PBP3를 동시에 저해하며, IPM은 PBP2의 저해 후 순차적으로 PBP3를 저해하였고 이러한 시험결과는 PBPs blinding pattern과 밀접한 관계가 있는 것으로 알려진 균형태변화로도 확인되었다.

  • PDF

Effect of Variation of Membrane Thickness on the Activity of $Ca^{2+}$-activated $K^+$ Channel in Planar Lipid Bilayers

  • Seo, Hyoung-Sik;Ryu, Pan-Dong
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1999.06a
    • /
    • pp.56-56
    • /
    • 1999
  • Change of membrane property can affect the activity of membrane proteins. In this work, we investigated the single channel properties of large conductance $Ca^{2+}$-activated $K^{+}$(BK) channels in planar lipid bilayers of different thickness. First, we recorded the activity of single BK channels from rat skeletal muscle incorporated into the control bilayer, then increased the bilayer thickness by perfusing the recording solution with the one saturated with n-pentane, or reduced the thickness by adding diheptanoylphosphatidylcholine (di$C_{7:0}$PC) to the recording soluton.(omitted)

  • PDF

Single-Channel Recording of TASK-3-like $K^+$ Channel and Up-Regulation of TASK-3 mRNA Expression after Spinal Cord Injury in Rat Dorsal Root Ganglion Neurons

  • Jang, In-Seok;La, Jun-Ho;Kim, Gyu-Tae;Lee, Jeong-Soon;Kim, Eun-Jin;Lee, Eun-Shin;Kim, Su-Jeong;Seo, Jeong-Min;Ahn, Sang-Ho;Park, Jae-Yong;Hong, Seong-Geun;Kang, Da-Won;Han, Jae-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.5
    • /
    • pp.245-251
    • /
    • 2008
  • Single-channel recordings of TASK-1 and TASK-3, members of two-pore domain $K^+$ channel family, have not yet been reported in dorsal root ganglion (DRG) neurons, even though their mRNA and activity in whole-cell currents have been detected in these neurons. Here, we report single-channel kinetics of the TASK-3-like $K^+$ channel in DRG neurons and up-regulation of TASK-3 mRNA expression in tissues isolated from animals with spinal cord injury (SCI). In DRG neurons, the single-channel conductance of TASK-3-like $K^+$ channel was $33.0{\pm}0.1$ pS at - 60 mV, and TASK-3 activity fell by $65{\pm}5%$ when the extracellular pH was changed from 7.3 to 6.3, indicating that the DRG $K^+$ channel is similar to cloned TASK-3 channel. TASK-3 mRNA and protein levels in brain, spinal cord, and DRG were significantly higher in injured animals than in sham-operated ones. These results indicate that TASK-3 channels are expressed and functional in DRG neurons and the expression level is up-regulated following SCI, and suggest that TASK-3 channel could act as a potential background $K^+$ channel under SCI-induced acidic condition.