• Title/Summary/Keyword: Channel State Information(CSI)

Search Result 175, Processing Time 0.025 seconds

Interference-Aware Radio Resource Allocation in D2D Underlaying LTE-Advanced Networks

  • Xu, Shaoyi;Kwak, Kyung Sup;Rao, Ramesh R.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2626-2646
    • /
    • 2014
  • This study presents a power and Physical Resource Blocks (PRBs) joint allocation algorithm to coordinate uplink (UL) interference in the device-to-device (D2D) underlaying Long Term Evolution-Advanced (LTE-A) networks. The objective is to find a mechanism to mitigate the UL interference between the two subsystems and maximize the weighted sum throughput as well. This optimization problem is formulated as a mixed integer nonlinear programming (MINLP) which is further decomposed into PRBs assignment and transmission power allocation. Specifically, the scenario of applying imperfect channel state information (CSI) is also taken into account in our study. Analysis reveals that the proposed PRBs allocation strategy is energy efficient and it suppresses the interference not only suffered by the LTE-A system but also to the D2D users. In another side, a low-complexity technique is proposed to obtain the optimal power allocation which resides in one of at most three feasible power vectors. Simulations show that the optimal power allocation combined with the proposed PRBs assignment achieves a higher weighted sum throughput as compared to traditional algorithms even when imperfect CSI is utilized.

Degrees of Freedom of Two-Cluster MIMO Multiway Relay Interference Channels Using Blind Interference Neutralization

  • Zhang, Bowei;Feng, Wenjiang;Dong, Tingting;Deng, Yina
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.168-186
    • /
    • 2016
  • In this paper, we investigate the degrees of freedom (DoF) of a two-cluster multiple-input multiple-output (MIMO) multiway relay interference channel (mRIC), where there are two relays and two users per cluster. In this channel, users within the same cluster exchange messages among themselves with the help of two relays.We first obtain the DoF upper bound of the considered MIMO mRIC based on cut-set bound. Then, we propose a novel transmission strategy, blind interference neutralization (BIN), to approach the DoF upper bound. This new method utilizes the overheard information at two relays and focuses on the beamforming matrix designs at two relays so that the channel state information (CSI) at users is not required. Through theoretical analysis and numerical simulations, we show that the DoF upper bound can be obtained by using the BIN scheme. From simulation results, we show that the proposed BIN scheme can provide significant performance gain over the conventional time division multiple access (TDMA) scheme in terms of DoF. In addition, we show that the BIN scheme is a superior approach to the existing signal space alignment (SSA) schemes for the considered mRIC.

Sparsity Adaptive Expectation Maximization Algorithm for Estimating Channels in MIMO Cooperation systems

  • Zhang, Aihua;Yang, Shouyi;Li, Jianjun;Li, Chunlei;Liu, Zhoufeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3498-3511
    • /
    • 2016
  • We investigate the channel state information (CSI) in multi-input multi-output (MIMO) cooperative networks that employ the amplify-and-forward transmission scheme. Least squares and expectation conditional maximization have been proposed in the system. However, neither of these two approaches takes advantage of channel sparsity, and they cause estimation performance loss. Unlike linear channel estimation methods, several compressed channel estimation methods are proposed in this study to exploit the sparsity of the MIMO cooperative channels based on the theory of compressed sensing. First, the channel estimation problem is formulated as a compressed sensing problem by using sparse decomposition theory. Second, the lower bound is derived for the estimation, and the MIMO relay channel is reconstructed via compressive sampling matching pursuit algorithms. Finally, based on this model, we propose a novel algorithm so called sparsity adaptive expectation maximization (SAEM) by using Kalman filter and expectation maximization algorithm so that it can exploit channel sparsity alternatively and also track the true support set of time-varying channel. Kalman filter is used to provide soft information of transmitted signals to the EM-based algorithm. Various numerical simulation results indicate that the proposed sparse channel estimation technique outperforms the previous estimation schemes.

Performance Analysis of STTC-based Dual Virtual Cell System under The Overlay Convergent Networks of Cognitive Networking (중첩 융합 네트워크 환경에서 STTC기반 이중 셀 시스템의 성능분석)

  • Kwon, Eun-Mi;Kim, Jeong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7A
    • /
    • pp.528-534
    • /
    • 2012
  • In order to achieve high capacity and reliable link quality of the overlay convergent networks with the cognitive networking based on the advanced capability of the mobile terminal, a Distributed Wireless Communication System (DWCS) can provide the capability of enhancing the link quality. This paper has considered virtual cell: the Dual Virtual Cell (DVC), and also proposes DVC employment strategy based on radio resource monitering. The considered system constructs DVC for multi-user high-rate data transmission, and the DWCS system exploits space-time trellis codes i.e., STTC to improve a spectral efficiency. The effects of imperfect CSI(channel state information) on the system performance has also been investigated.

Characterization of Effective Capacity in Antenna Selection MIMO Systems

  • Lari, Mohammad;Mohammadi, Abbas;Abdipour, Abdolali;Lee, Inkyu
    • Journal of Communications and Networks
    • /
    • v.15 no.5
    • /
    • pp.476-485
    • /
    • 2013
  • In this paper, the effective capacity of a multiple-input multiple-output (MIMO) system in two different cases with receive antenna selection (RAS) and transmit antenna selection (TAS) schemes is investigated. A closed-form solution for the maximum constant arrival rate of this network with statistical delay quality of service (QoS) constraint is extracted in the quasi-static fading channel. This study is conducted in two different cases.When channel state information (CSI) is not available at the MIMO transmitter, implementation of TAS is difficult. Therefore, RAS scheme is employed and one antenna with the maximum instantaneous signal to noise ratio is chosen at the receiver. On the other hand, when CSI is available at the transmitter, TAS scheme is executed. In this case, one antenna is selected at the transmitter. Moreover, an optimal power-control policy is applied to the selected antenna and the effective capacity of the MIMO system is derived. Finally, this optimal power adaptation and the effective capacity are investigated in two asymptotic cases with the loose and strict QoS requirements. In particular, we show that in the TAS scheme with the loose QoS restriction, the effective capacity converges to the ergodic capacity. Then, an exact closed-form solution is obtained for the ergodic capacity of the channel here.

Density Evolution Analysis of RS-A-SISO Algorithms for Serially Concatenated CPM over Fading Channels (페이딩 채널에서 직렬 결합 CPM (SCCPM)에 대한 RS-A-SISO 알고리즘과 확률 밀도 진화 분석)

  • Chung, Kyu-Hyuk;Heo, Jun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.7 s.337
    • /
    • pp.27-34
    • /
    • 2005
  • Iterative detection (ID) has proven to be a near-optimal solution for concatenated Finite State Machines (FSMs) with interleavers over an additive white Gaussian noise (AWGN) channel. When perfect channel state information (CSI) is not available at the receiver, an adaptive ID (AID) scheme is required to deal with the unknown, and possibly time-varying parameters. The basic building block for ID or AID is the soft-input soft-output (SISO) or adaptive SISO (A-SISO) module. In this paper, Reduced State SISO (RS-SISO) algorithms have been applied for complexity reduction of the A-SISO module. We show that serially concatenated CPM (SCCPM) with AID has turbo-like performance over fading ISI channels and also RS-A-SISO systems have large iteration gains. Various design options for RS-A-SISO algorithms are evaluated. Recently developed density evolution technique is used to analyze RS-A-SISO algorithms. We show that density evolution technique that is usually used for AWGN systems is also a good analysis tool for RS-A-SISO systems over frequency-selective fading channels.

User-Cooperation and Cyclic Coding in Wireless Sensor Networks (무선센서네트워크에서 순환부호를 사용한 사용자 협력에 관한 연구)

  • Khuong Ho Van;Kong Hyung-Yun;Lee Dong-Un
    • The KIPS Transactions:PartC
    • /
    • v.13C no.3 s.106
    • /
    • pp.317-322
    • /
    • 2006
  • This paper presents an efficient user-cooperation protocol associated with cyclic coding for WSNs (Wireless Sensor Networks) using LEACH(Low-Energy Adaptive Clustering Hierarchy). Since the proposed user-cooperation requires no CSI(Channel State Information) at both transmitter and receiver, and encoding and decoding of cyclic codes are simple, the processing complexity of sensor nodes is significantly reduced. Simulation results reveal such a combination can save the network energy up to 10dB over single-hop transmission at BER of $10^{-4}$.

Low-Complexity MIMO Detection Algorithm with Adaptive Interference Mitigation in DL MU-MIMO Systems with Quantization Error

  • Park, Jangyong;Kim, Minjoon;Kim, Hyunsub;Jung, Yunho;Kim, Jaeseok
    • Journal of Communications and Networks
    • /
    • v.18 no.2
    • /
    • pp.210-217
    • /
    • 2016
  • In this paper, we propose a low complexity multiple-input multiple-output (MIMO) detection algorithm with adaptive interference mitigation in downlink multiuser MIMO (DL MU-MIMO) systems with quantization error of the channel state information (CSI) feedback. In DL MU-MIMO systems using the imperfect precoding matrix caused by quantization error of the CSI feedback, the station receives the desired signal as well as the residual interference signal. Therefore, a complexMIMO detection algorithm with interference mitigation is required for mitigating the residual interference. To reduce the computational complexity, we propose a MIMO detection algorithm with adaptive interference mitigation. The proposed algorithm adaptively mitigates the residual interference by using the maximum likelihood detection (MLD) error criterion (MEC). We derive a theoretical MEC by using the MLD error condition and a practical MEC by approximating the theoretical MEC. In conclusion, the proposed algorithm adaptively performs interference mitigation when satisfying the practical MEC. Simulation results show that the proposed algorithm reduces the computational complexity and has the same performance, compared to the generalized sphere decoder, which always performs interference mitigation.

Symbol Based Rate Adaptation in Coded MIMO-OFDM Systems (심볼 기반의 적응 변조 기법을 이용한 채널 부호화된 MIMO-OFDM 시스템)

  • Sung, Chang-Kyung;Kim, Ji-Hoon;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1A
    • /
    • pp.50-58
    • /
    • 2008
  • The use of space-division multiple access(SDMA) in the downlink of multiuser multi-input/multi-output(MIMO) wireless transmission systems can provide substantial gains in system throughput. When the channel state information(CSI) is available at the transmitter, a considerable performance improvement can be attained by adapting the transmission rates to the reported CSI. In addition, to combat frequency selective fadings in wideband wireless channels, bit-interleaved coded OFDM(BIC-OFDM) modulation schemes are employed to provide reliable packet delivery by utilizing frequency diversity through channel coding. In this paper, we propose an adaptive modulation and coding(AMC) scheme combined with an opportunistic scheduling technique for the MIMO BIC-OFDM with bandwidth-limited feedback channels. The proposed scheme enhances the link performance by exploiting both the frequency diversity and the multiuser diversity. To reduce the feedback information, the proposed AMC scheme employs rate adaptation methods based on an OFDM symbol rather than on the whole subchannels. Simulation results show that the proposed scheme exhibits a substantial performance gain with a reasonable complexity over single antenna systems.

Performance Analysis on Soft Decision Decoding using Erasure Technique (COFDM 시스템에서 채널상태정보를 이용한 Viterbi 디코더)

  • 이원철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.10A
    • /
    • pp.1563-1570
    • /
    • 1999
  • This paper relates to the soft decision method with erasure technique in digital terrestrial television broadcasting system. The proposed decoder use the CSI derived from using the pilots in receiver. The active real(I) and imaginary(Q) data are transferred to the branch metric calculation block that decides the Euclidean distance for the soft decision decoding and also the estimated CSI values are transferred to the same block. After calculating the Euclidean distance for the soft decision decoding, the Euclidean distance of branch metric is multiplied by CSI. To do so, new branch metric values that consider each carrier state information are obtained. We simulated this method in better performance of about 0.15dB to 0.17dB and 2.2dB to 2.9dB in Rayleigh channel than that of the conventional soft decision Viterbi decoding with or without bit interleaver where the constellation is QPSK, 16-QAM and 64-QAM.

  • PDF