• Title/Summary/Keyword: Channel Sensing

Search Result 571, Processing Time 0.025 seconds

PERIODIC SENSING AND GREEDY ACCESS POLICY USING CHANNEL MODELS WITH GENERALLY DISTRIBUTED ON AND OFF PERIODS IN COGNITIVE NETWORKS

  • Lee, Yutae
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.1_2
    • /
    • pp.129-136
    • /
    • 2014
  • One of the fundamental issues in the design of dynamic spectrum access policy is the modeling of the dynamic behavior of channel occupancy by primary users. Under a Markovian modeling of channel occupancy, a periodic sensing and greedy access policy is known as one of the simple and practical dynamic spectrum access policies in cognitive radio networks. In this paper, the primary occupancy of each channel is modeled as a discrete-time alternating renewal process with generally distributed on- and off-periods. A periodic sensing and greedy access policy is constructed based on the general channel occupancy model. Simulation results show that the proposed policy has better throughput than the policies using channel models with exponentially distributed on- or off-periods.

Distributed Compressive Sensing Based Channel Feedback Scheme for Massive Antenna Arrays with Spatial Correlation

  • Gao, Huanqin;Song, Rongfang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.1
    • /
    • pp.108-122
    • /
    • 2014
  • Massive antenna array is an attractive candidate technique for future broadband wireless communications to acquire high spectrum and energy efficiency. However, such benefits can be realized only when proper channel information is available at the transmitter. Since the amount of the channel information required by the transmitter is large for massive antennas, the feedback is burdensome in practice, especially for frequency division duplex (FDD) systems, and needs normally to be reduced. In this paper a novel channel feedback reduction scheme based on the theory of distributed compressive sensing (DCS) is proposed to apply to massive antenna arrays with spatial correlation, which brings substantially reduced feedback load. Simulation results prove that the novel scheme is better than the channel feedback technique based on traditional compressive sensing (CS) in the aspects of mean square error (MSE), cumulative distributed function (CDF) performance and feedback resources saving.

Reinforcement Learning based Multi-Channel MAC Protocol for Cognitive Radio Ad-hoc Networks (인지무선 에드혹 네트워크를 위한 강화학습기반의 멀티채널 MAC 프로토콜)

  • Park, Hyung-Kun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.7
    • /
    • pp.1026-1031
    • /
    • 2022
  • Cognitive Radio Ad-Hoc Networks (CRAHNs) enable to overcome the shortage of frequency resources due to the increase of radio services. In order to avoid interference with the primary user in CRANH, channel sensing to check the idle channel is required, and when the primary user appears, the time delay due to handover should be minimized through fast idle channel selection. In this paper, throughput was improved by reducing the number of channel sensing and preferentially sensing a channel with a high probability of being idle, using reinforcement learning. In addition, we proposed a multi-channel MAC (Medium Access Control) protocol that can minimize the possibility of collision with the primary user by sensing the channel at the time of data transmission without performing periodic sensing. The performance was compared and analyzed through computer simulation.

Cooperative Spectrum Sensing with Feedback Error in the Cognitive Radio Systems (무선 인지 시스템에서 궤환 오류를 고려한 협력 스펙트럼 센싱 기법에 관한 연구)

  • Oh, Dong-Chan;Lee, Heui-Chang;Lee, Yong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4C
    • /
    • pp.364-370
    • /
    • 2010
  • In this paper, we propose a cooperative channel sensing scheme in the presence of feedback errors. Accurate local sensing results may not directly be applied to cooperative sensing due to feedback errors. We consider the cooperative channel sensing that utilizes local sensing results in good feedback channel condition. Finally, simulation results show that the proposed scheme can maximize the detection probability while guaranteeing desired false alarm probability.

Sparse Channel Estimation of Single Carrier Frequency Division Multiple Access Based on Compressive Sensing

  • Zhong, Yuan-Hong;Huang, Zhi-Yong;Zhu, Bin;Wu, Hua
    • Journal of Information Processing Systems
    • /
    • v.11 no.3
    • /
    • pp.342-353
    • /
    • 2015
  • It is widely accepted that single carrier frequency division multiple access (SC-FDMA) is an excellent candidate for broadband wireless systems. Channel estimation is one of the key challenges in SC-FDMA, since accurate channel estimation can significantly improve equalization at the receiver and, consequently, enhance the communication performances. In this paper, we study the application of compressive sensing for sparse channel estimation in a SC-FDMA system. By skillfully designing pilots, their patterns, and taking advantages of the sparsity of the channel impulse response, the proposed system realizes channel estimation at a low cost. Simulation results show that it can achieve significantly improved performance in a frequency selective fading sparse channel with fewer pilots.

Optimization of Cooperative Sensing in Interference-Aware Cognitive Radio Networks over Imperfect Reporting Channel

  • Kan, Changju;Wu, Qihui;Song, Fei;Ding, Guoru
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1208-1222
    • /
    • 2014
  • Due to the low utilization and scarcity of frequency spectrum in current spectrum allocation methodology, cognitive radio networks (CRNs) have been proposed as a promising method to solve the problem, of which spectrum sensing is an important technology to utilize the precious spectrum resources. In order to protect the primary user from being interfered, most of the related works focus only on the restriction of the missed detection probability, which may causes over-protection of the primary user. Thus the interference probability is defined and the interference-aware sensing model is introduced in this paper. The interference-aware sensing model takes the spatial conditions into consideration, and can further improve the network performance with good spectrum reuse opportunity. Meanwhile, as so many fading factors affect the spectrum channel, errors are inevitably exist in the reporting channel in cooperative sensing, which is improper to be ignored. Motivated by the above, in this paper, we study the throughput tradeoff for interference-aware cognitive radio networks over imperfect reporting channel. For the cooperative spectrum sensing, the K-out-of-N fusion rule is used. By jointly optimizing the sensing time and the parameter K value, the maximum throughput can be achieved. Theoretical analysis is given to prove the feasibility of the optimization and computer simulations also shows that the maximum throughput can be achieved when the sensing time and the parameter of K value are both optimized.

Massive MIMO Channel Estimation Algorithm Based on Weighted Compressed Sensing

  • Lv, Zhiguo;Wang, Weijing
    • Journal of Information Processing Systems
    • /
    • v.17 no.6
    • /
    • pp.1083-1096
    • /
    • 2021
  • Compressed sensing-based matching pursuit algorithms can estimate the sparse channel of massive multiple input multiple-output systems with short pilot sequences. Although they have the advantages of low computational complexity and low pilot overhead, their accuracy remains insufficient. Simply multiplying the weight value and the estimated channel obtained in different iterations can only improve the accuracy of channel estimation under conditions of low signal-to-noise ratio (SNR), whereas it degrades accuracy under conditions of high SNR. To address this issue, an improved weighted matching pursuit algorithm is proposed, which obtains a suitable weight value uop by training the channel data. The step of the weight value increasing with successive iterations is calculated according to the sparsity of the channel and uop. Adjusting the weight value adaptively over the iterations can further improve the accuracy of estimation. The results of simulations conducted to evaluate the proposed algorithm show that it exhibits improved performance in terms of accuracy compared to previous methods under conditions of both high and low SNR.

Artificial Neural Network with Firefly Algorithm-Based Collaborative Spectrum Sensing in Cognitive Radio Networks

  • Velmurugan., S;P. Ezhumalai;E.A. Mary Anita
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1951-1975
    • /
    • 2023
  • Recent advances in Cognitive Radio Networks (CRN) have elevated them to the status of a critical instrument for overcoming spectrum limits and achieving severe future wireless communication requirements. Collaborative spectrum sensing is presented for efficient channel selection because spectrum sensing is an essential part of CRNs. This study presents an innovative cooperative spectrum sensing (CSS) model that is built on the Firefly Algorithm (FA), as well as machine learning artificial neural networks (ANN). This system makes use of user grouping strategies to improve detection performance dramatically while lowering collaboration costs. Cooperative sensing wasn't used until after cognitive radio users had been correctly identified using energy data samples and an ANN model. Cooperative sensing strategies produce a user base that is either secure, requires less effort, or is faultless. The suggested method's purpose is to choose the best transmission channel. Clustering is utilized by the suggested ANN-FA model to reduce spectrum sensing inaccuracy. The transmission channel that has the highest weight is chosen by employing the method that has been provided for computing channel weight. The proposed ANN-FA model computes channel weight based on three sets of input parameters: PU utilization, CR count, and channel capacity. Using an improved evolutionary algorithm, the key principles of the ANN-FA scheme are optimized to boost the overall efficiency of the CRN channel selection technique. This study proposes the Artificial Neural Network with Firefly Algorithm (ANN-FA) for cognitive radio networks to overcome the obstacles. This proposed work focuses primarily on sensing the optimal secondary user channel and reducing the spectrum handoff delay in wireless networks. Several benchmark functions are utilized We analyze the efficacy of this innovative strategy by evaluating its performance. The performance of ANN-FA is 22.72 percent more robust and effective than that of the other metaheuristic algorithm, according to experimental findings. The proposed ANN-FA model is simulated using the NS2 simulator, The results are evaluated in terms of average interference ratio, spectrum opportunity utilization, three metrics are measured: packet delivery ratio (PDR), end-to-end delay, and end-to-average throughput for a variety of different CRs found in the network.

An Analysis of Combining Methods in Cooperative Spectrum Sensing over Rayleigh Fading Channel

  • Truc, Tran Thanh;Kong, Hyung-Yun
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.190-198
    • /
    • 2010
  • This paper evaluates the performance of two methods of spectrum sensing: the linear combining method and the selection combining method which is based on maximum SNR of sensing channel. We proposed a rule for global detection for the purpose of combating hidden terminal problems in spectrum sensing. Our analysis considers a situation when sensing channels experience the non-identically, independently distributed(n.i.d) Rayleigh fading. The average probabilities of global detection in these methods are derived and compared. In the scope of this paper, the reporting channels are assumed to be the AWGN channel with invariant and identical gain during the system's operation.

Optimal Channel Sensing for Heterogeneous Cognitive Networks: An Analytical Approach

  • Yu, Heejung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.2987-3002
    • /
    • 2013
  • The problem of optimal channel sensing in heterogeneous cognitive networks is considered to maximize the system throughput performance. The characteristics of an optimal operating sensing point maximizing the overall system rate are investigated under several rate criteria including the sum rate, the minimum of the primary and secondary rates, and the secondary rate with a guaranteed primary rate. Under the sum rate criterion, it is shown that the loss by imperfect sensing is no greater than half of the sum rate achieved by the perfect time sharing approach in a two user case if the sensing point is optimally designed.