• Title/Summary/Keyword: Channel Parameters Estimation

Search Result 131, Processing Time 0.026 seconds

Optimization Algorithm for Spectrum Sensing Delay Time in Cognitive Radio Networks Using Decoding Forward Relay

  • Xia, Kaili;Jiang, Xianyang;Yao, Yingbiao;Tang, Xianghong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1301-1312
    • /
    • 2020
  • Using decode-and-forward relaying in the cognitive radio networks, the spectrum efficiency can improve furthermore. The optimization algorithm of the spectrum sensing estimation time is presented for the cognitive relay networks in this paper. The longer sensing time will bring two aspects of the consequences. On the one hand, the channel parameters are estimated more accurate so as to reduce the interferences to the authorized users and to improve the throughput of the cognitive users. On the other hand, it shortens the transmission time so as to decease the system throughput. In this time, it exists an optimal sensing time to maximize the throughput. The channel state information of the sub-bands is considered as the exponentially distributed, so a stochastic programming method is proposed to optimize the sensing time for the cognitive relay networks. The computer simulation results using the Matlab software show that the algorithm is effective, which has a certain engineering application value.

An Estimation of Flood Quantiles at Ungauged Locations by Index Flood Frequency Curves (지표홍수 빈도곡선의 개발에 의한 미 계측지점의 확률 홍수량 추정)

  • Yoon, Yong-Nam;Shin, Chang-Kun;Jang, Su-Hyung
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.1
    • /
    • pp.1-9
    • /
    • 2005
  • The study shows the possible use of the index flood frequency curves for an estimation of flood quantiles at ungauged locations. Flood frequency analysis were made for the annual maximum flood data series at 9 available stations in the Han river basin. From the flood frquency curve at each station the mean annual flood of 2.33-year return period was determined and the ratios of the flood magnitude of various return period to the mean annual flood at each station were averaged throughout the Han river basin, resulting mean flood ratios of different return periods. A correlation analysis was made between the mean annual flood and physiographic parameters of the watersheds i.e, the watershed area and mean river channel slope, resulting an empirical multiple linear regression equation over the whole Han river basin. For unguaged watershed the flood of a specified return period could be estimated by multiplying the mead flood ratio corresponding the return period with the mean annual flood computed by the empirical formula developed in terms of the watershed area and river channel slope. To verify the applicability of the methodology developed in the present study the floods of various return periods determined for the watershed in the river channel improvement plan formulation by the Ministry of Construction and Transportation(MOCT) were compared with those estimated by the present method. The result proved a resonable agreement up to the watershed area of approximately 2,000k $m^2$. It is suggested that the practice of design flood estimation based on the rainfall-runoff analysis might have to be reevaluated because it involves too much uncertainties in the hydrologic data and rainfall-runoff model calibration.

Evaluation of Stream Flow Data Observed in the Pyungchang River Basin Using the IHACRES Model (IHACRES 모형을 이용한 평창강 유역 내 관측 유량자료의 평가)

  • Park, Yong-Hee;Yoo, Chul-Sang
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.4
    • /
    • pp.123-133
    • /
    • 2008
  • This study evaluated the runoff data collected at 12 stream gauge stations of the Chungjoo dam basin using the IHACRES model. Especially, the geomorphology-related parameters of the IHACRES model could be quantified base on the regionalization technique, which have also been applied many stream gauge stations of the Chungjoo dam basin. Summarizing the results is as follows. (1) The climate-related parameters of the IHACRES model c, $\tau_w{^0}$, and f are found to be estimated and used uniformly over the basin. (2) The geomorphology-related parameters of the IHACRES model $t_q,\;t_s,\;and\;v_s$ are found to be estimated by considering the geomorphological parameters like the basin area, channel length, channel slope, basin slope through the regionalization based on the regression analysis. (3) Using the climate-related parameters applied uniformly over the basin and the geomorphology-related parameters estimated based on the regionalization procedure for each stream gauge station, a total of 12 stream gauge stations have been evaluated with their stream flow measurements. As results, the Sanganmi and Youngwal 1 stream gauge stations have been found to make high quality flow data, but Youngwal, Baekokpo, and Panwoon stations low quality flow data. On the whole, 12 stream gauge stations considered show large differences with their data quality, so a plan for securing more consistent data quality should be prepared imminently.

Frequency Offset Estimation Performance Analysis in OFDM Packet Communication Systems with Unequal Gain Allocation of Training Sequences (OFDM 무선 패킷 통신 시스템에서의 비균일 훈련 심볼 이득 할당에 의한 주파수 오프셋 예측 성능 분석)

  • Kwak, Jae-Min
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.10
    • /
    • pp.8-12
    • /
    • 2007
  • In this paper, we proposed an frequency offset estimation scheme which can be used for packet based OFDM communication systems such as IEEE802.11a and IEEE802.11p physical layer. Proposed estimation scheme can adjust the gain allocation ratio between long training symbol and short training symbol while maintaining average power of overall training sequence so that we can obtain the reference parameters for MSE performance improvement. The preamble structure considered in this paper is based on the preamble specified in IEEE802.11a and IEEE802.11p standardization group. From the simulation results, it is shown that power ratio between long training symbol and short training symbol must vanes for achieving lower frequency offset estimation error as channel SNR condition is changed. Also it is known oat proposed scheme can achieve better performance than conventional one.

Integrated Storage Function Model with Fuzzy Control for Flood Forecasting (I) - Theory and Proposal of Model - (홍수예보를 위한 통합저류함수모형의 퍼지제어 (I) - 이론 및 모형의 수립 -)

  • Lee, Jeong-Gyu;Kim, Han-Seop
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.6
    • /
    • pp.689-699
    • /
    • 2000
  • This paper presents the integrated storage function model (ISFM) to improve the accuracy of the storage function model (SFM) which is widely employed for flood runoff analysis and its forecasting in Korea. In order to achieve this objective, the optimization method is applied for estimation of parameters of the model which dominate the accuracy of the analysis, which is usually taken by empirical formulae, and they are treated as time dependent variables. The fuzzy control technique is used to detennine the time variant parameters. In addition, the ISFM can be applied to the combined routing of the watershed and the channel with a residual watershed.ershed.

  • PDF

Indoor RSSI Characterization using Statistical Methods in Wireless Sensor Network (무선 센서네트워크에서의 통계적 방법에 의한 실내 RSSI 측정)

  • Pu, Chuan-Chin;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.457-461
    • /
    • 2007
  • In many applications, received signal strength indicator is used for location tracking and sensor nodes localization. For location finding, the distances between sensor nodes can be estimated by converting received signal's power into distance using path loss prediction model. Many researches have done the analysis of power-distance relationship for radio channel characterization. In indoor environment, the general conclusion is the non-linear variation of RSSI values as distance varied linearly. This has been one of the difficulties for indoor localization. This paper presents works on indoor RSSI characterization based on statistical methods to find the overall trend of RSSI variation at different places and times within the same room From experiments, it has been shown that the variation of RSSI values can be determined by both spatial and temporal factors. This two factors are directly indicated by the two main parameters of path loss prediction model. The results show that all sensor nodes which are located at different places share the same characterization value for the temporal parameter whereas different values for the spatial parameters. Using this relationship, the characterization for location estimation can be more efficient and accurate.

  • PDF

An improvement of Simplified Atmospheric Correction : MODIS Visible Channel

  • Lee, Chang-Suk;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.6
    • /
    • pp.487-499
    • /
    • 2009
  • Atmospheric correction of satellite measurements is a major step to estimate accurate surface reflectance of solar spectrum channels. In this study, Simplified Method for the Atmospheric Correction (SMAC) radiative transfer model used to retrieve surface reflectance from MODIS (MODerate resolution Imaging Spectrometer) top of atmosphere (TOA) reflectance. It is fast and simple atmospheric correction method, so it uses for work site operation in various satellite. This study attempts a test of accuracy of SMAC through a sensitivity test to detected error sources and to improve accuracy of surface reflectance using SMAC. The results of SMAC as compared with MODIS surface reflectance (MOD09) was represented that low accuracy ($R^2\;=\;0.6196$, Root Means Square Error (RMSE) = 0.00031, bias = - 0.0859). Thus sensitivity analysis of input parameters and coefficients was conducted to searching error sources. Among the input parameters, Aerosol Optical Depth (AOD) is the most influence input parameter. In order to modify AOD term in SMAC code, Stepwise multiple regression was performed with testing and remove variable in three stages with independent variables of AOD at 550nm, solar zenith angle, viewing zenith angle. Surface reflectance estimation by using Newly proposed AOD term in the study showed that improve accuracy ($R^2\;=\;0.827$, RMSE = 0.00672, bias = - 0.000762).

MHD Pressure Drop of a Liquid-Metal Flow under a Transverse Magnetic Field (자기장하의 액체금속 유동의 차압 측정)

  • Cha, Jae-Eun;Kim, Hee-Reyoung;Kim, Jong-Man;Nam, Ho-Yoon;Kim, Sung-O;Kim, Byung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2638-2641
    • /
    • 2007
  • The magnetohydrodynamic(MHD) pressure drop along a liquid sodium flow was measured in a rectangular duct under a transverse magnetic field. The test section was made of a 3 mm thick stainless steel SUS304 with a $74{\times}5mm^2$ rectangular flow channel. The range of experimental parameters was roughly B=0${\sim}$0.18T and U=0${\sim}$0.9m/s at around $200^{\circ}C$. The differential pressure was measured by a diaphragm seal-type pressure transmitter filled with a high temperature silicon oil within 0.1MPa. The experimental results show a similar pressure drop with the theoretical estimation according to a change of the flow velocity and the magnetic field.

  • PDF

Separation of Single Channel Mixture Using Time-domain Basis Functions

  • Jang, Gil-Jin;Oh, Yung-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.4E
    • /
    • pp.146-155
    • /
    • 2002
  • We present a new technique for achieving source separation when given only a single charmel recording. The main idea is based on exploiting the inherent time structure of sound sources by learning a priori sets of time-domain basis functions that encode the sources in a statistically efficient manner. We derive a learning algorithm using a maximum likelihood approach given the observed single charmel data and sets of basis functions. For each time point we infer the source parameters and their contribution factors. This inference is possible due to the prior knowledge of the basis functions and the associated coefficient densities. A flexible model for density estimation allows accurate modeling of the observation, and our experimental results exhibit a high level of separation performance for simulated mixtures as well as real environment recordings employing mixtures of two different sources. We show separation results of two music signals as well as the separation of two voice signals.

Estimation Instream Flow Incremental Methodology (IFIM)

  • Lee, Joo-Heon;Jeong, Sang-Man;Lee, Myung-Ho;Lee, Soo-Yong;Lee, Eun-Tae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.52-59
    • /
    • 2005
  • The goal of this project is to estimate the instream flow of the Han River Basin to ensure the adequate supply of suitable quality water for preservation and enhancement of aquatic ecosystems. A applied model is Physical Habitant Simulation System(PHABSIM) of Instream Flow Incremental Methodology(IFIM). The parameters which are needed to simulation by PHABSIM such as flow depth, velocity distribution and channel cover with cross section data are obtained by field survey. The Habitat Suitability Criteria with the application of univariate curve on Zacco platypus as a target species was able to be established by conducting the field investigation. The estimated results of ecological recommended instream flow by this study has important meanings that the future river management have to seriously take into account for the natural environment and functions of river system.

  • PDF