최근 방송과 통신의 융합으로 TV에 통신이라는 기술이 접목되면서, TV 시청 형태에 많은 변화를 가져왔다. 이러한 형태의 TV 시청 변화는 서비스 선택의 폭을 넓혀주지만 프로그램을 선택을 위해 많은 시간을 투자해야 한다. 이러한 단점을 개선하기 위해서 본 논문에서는 IPTV환경에서 사용자의 다양한 콘텐츠를 제공하는 방송 환경에서 고객의 시청 정보를 바탕으로 고객 사용정보 온톨로지를 구축하고 그에 따라 고객을 k-medoids 방법을 이용해서 클러스터링 한다. 이를 바탕으로 고객이 선호하는 콘텐츠를 추천 하는 방법을 제안하였다. 실험부분에서 본 제안방법의 우수성을 기존의 방법과 비교하여 보여준다.
관상동맥우회로술 시에 이식편으로 사용되는 혈관들의 조합은 다양하다. 또한 수술 후의 장기 추적조사에 침습적인 관상동맥조영술을 이용하는데는 제한이 되어왔다. 본 연구에서는 좌내흉동맥을 좌전하행지에, 나머지의 목표혈관에는 복재정맥편을 사용하는 고전적인 방법으로 수술한 환자들에서 외래에서 비침습적인 MDCT로 이식편의 개존유무를 수술자의 입장에서 확인하는 방법의 유용성을 평가하고자 하였다. 대상 및 방법: 아주대학교의료원 흉부외과에서 1995년부터 2003년 사이에 다중관상동맥질환으로 관상동맥우회로술을 받았던 환자들 중 외래추적조사에서 특별한 증세의 재발을 호소하지 않았던 환자들을 대상으로 환자의 동의 하에 16 Channel MDCT를 시행하였던 80명의 환자들을 대상으로 이식도관의 개존성을 분석하였다. 결과: 대상환자 중 남녀비는 61:19였으며 평균연령은 $58.9\pm8.9$세였다. MDCT의 촬영시점은 최소 수술 후 7일에서 수술 후 9년으로 중앙값은 6.5년이었다. 환자당 평균 $3.10\pm1.9$개의 도관이 이식되었다. 좌전하행지에 좌내흉동맥을 72명의 환자에 이식하였고, 나머지의 목표혈관에는 복재정맥편을 이식하였다. 복재정맥편의 목표혈관은 좌전하행지 8예, 우관상동맥에 47예, 둔각지에 61예, 대각지에 60예를 각각 이식하였으며, 이중 42예에서 연속문합을 시행하였다. 이식편의 5년개존율이 좌내흉동맥이 $93.1\%$였고 복재정맥괸이 $89.3\%$였다 복재정맥편의 목표혈관별 5년개존율은 대각지 $94.9\%$, 둔각지$92.1\%$, 그리고 우관상동맥이 $79.2\%$순이었다. 복재정맥편의 경우 단독문합의 페쇄율이 $5\~21.3\%$로 연속문합의 $4.8\%$에 비해 높았다. 걸론: 관상동맥우회로 술 후에 외래추적기간 중 시행한 MDCT는 이식도관의 개존을 확인하는데 효과적이었으며, 향후 영상의 해상도가 높아지면 관상동맥의 질환을 진단하는데도 크게 기여할 것으로 기대된다. 본 조사의 결과에 의하면 관상동맥우회로술시에 좌내흉동맥과 복재정맥편을 혼용한 수술의 결과는 만족한 것으로 판단된다.
공동충전 효과를 검증하기 위하여 실시한 시차 공대공 탄성파 탐사자료로부터 지하공동 부존 지역에서 충전 전과 후에 매질의 탄성파 전파속도의 변화를 확인하였다. 시차 공대공 탄성파 탐사자료에 나타난 반응과 시추조사 결과에 의하면 본 지역의 공동은 규모가 극히 소규모이거나 또는 폐석 등으로 충전된 것으로 보인다. 공동충진 효과는 토모그래피로부터 도출된 속도단면상의 탄성파 속도의 증가량을 분석함으로써 평가하였다. 시추공용 에어건을 진원으로 24-채널 하이드로폰을 수진기로 하여 자료를 취득하였다. 취득한 자료에는 무시할 수 없을 정도의 source statics를 확인할 수 있었다. 본 논문에서 제시한 보정방법은 2단계로; 1) 불규칙한 발파시점에 의한 영향 보정과 2) 잔여 정보정으로 이는 진원의 부정확한 위치에 대한 정보정이다. 본 논문에서는 고주파수 성분의 수치잡음이 억제되고 관심대상 부분에서 비교적 고분해능 영상을 도출할 수 있는 다단계 역산 방안을 제시하였다. 일반적으로 최소자승 주시토모그래피로는 평활화된 속도 영상을 얻을 수 있다. 따라서 이러한 역산으로는 비교적 소규모의 구간에서 발생한 적은 속도변화를 영상화하기에는 어려운 면이 있다. 본 논문에서는 속도모델의 파라메터를 변화시킨 2단계 제어 역산법으로 도출한 시차 토모그램으로부터 채굴 영향대에서 발생한 매질의 속도변화를 시각화 할 수 있었다. 2단계 역산법은 1-단계에서는 적정한 크기의 균일 격자로 구성된 모델을 사용하여 토모그램을 작성하고 이 토모그램에 2차원 중위수 필터를 적용하여 대략적인 속도구조 모델을 작성한다. 2-단계 역산시는 1-단계에서 작성한 속도모델을 수정하여 초기 모델로 한다. 모델 수정은 관심대상 부분만을 작은 크기의 균일격자로 재구성하는 것이다. 기준조사 토모그램을 2차 조사자료 역산의 초기 속도모델로 사용하였다. 속도변화는 공동대 부근에서만 예상되므로 그 이외 부분의 속도는 기준 토모그램과 동일하게 고정시키고 역산을 수행하였다.
본 연구는 국내의 대표적 굴 양식지인 거제한산만에서 저서동물군집의 시 공간적 분포 및 구조적 변화를 파악하고자 수행되었다. 현장 조사를 위해 굴 양식지와 비양식지를 포함하는 총 15개 정점을 선정하였으며 2008년 2월부터 11월까지 계절별로 저서환경과 대형저서동물군집에 대한 조사를 수행하였다. 표층퇴적물은 평균입도 $9.0\;{\Phi}$ 전후의 극세립실트로 구성되었으며 총유기탄소는 평균 1.9%이었다. 용존산소농도의 평균은 8.1 mg/L이었으며 사계절 중 가장 낮은 값은 보인 8월에는 해역 수질환경기준 II등급에 해당하는 농도가 관찰되었다. 저서동물군집의 총 종수는 351종, 평균 개체밀도는 3,675 개체/$m^2$ 이었으며 두 가지 변수에서 모두 다모류가 가장 우세한 동물군이었다. 출현종수와 개체밀도는 시 공간적으로 크게 변하였으며 계절적으로는 5월에 그리고 공간적으로 내만역 보다는 수로역에서 높은 값을 보였다. 주요 우점종은 Lumbrineris longifolia(21.3%), Aphelochaeta monilaris(17.8%) 그리고 Ericthonius pugnax(6.1%) 등으로 모두 유기물이 풍부한 해역을 대표하는 종들이었다. 다변량분석 결과, 전체군집은 내만역과 수로역으로 구분되었다. 전체군집의 시 공간적 변화와 가장 밀접한 상관성을 보인 환경요인은 총유기탄소와 산휘발성황화물이었다. 저서동물군집 구조와 주요환경요인의 특성은 거제한산만에서 유기물 오염의 징후가 있음을 의심하게 하였으며 그러한 현상은 특히 내만역의 굴 양식지에서 뚜렷하였다.
최근 웹툰, 음원, 동영상, 게임, 교육, 앱 등 많은 콘텐츠 기업에서 콘텐츠 유료화 정책을 추진하고 있으나, 무료 콘텐츠에 익숙한 독자들의 문화적 관성이 온라인 콘텐츠의 유료화 전환에 많은 어려움을 주고 있다. 특히 온라인 뉴스 콘텐츠는 포털 사이트를 통해 무료로 배포되고 있어 유료화에 대한 독자들의 거부감이 다른 온라인 콘텐츠 보다 더욱 심한 실정이다. 이러한 문제 해결을 위해 학계 및 산업계에서 온라인 콘텐츠의 유료화 방안에 대한 연구가 다양한 차원에서 진행되었다. 최근에는 일부 온라인 뉴스 매체를 중심으로 독자들이 자발적으로 마음에 드는 뉴스 콘텐츠에 대해 원하는 만큼의 구독료를 지불하게 하는 Pay-What-You-Want (PWYW) 지불모델을 적용하는 시도가 이뤄지고 있다. 이에 본 연구는 PWYW 모델의 성공적인 정착을 위한 선결요인으로 독자의 자발적 독자구독료 지불행위에 영향을 미치는 온라인 뉴스 콘텐츠의 체계적 속성을 도출하고, 각 속성 및 하위 속성의 상대적 중요도를 비교 분석하였다. 좀 더 구체적으로, 선행연구 분석을 통해 기사제목 유형, 기사 이미지 자극성, 기사 가독성, 기사 유형, 기사 지배적 정서, 기사 내용-이미지 유사성 등 총 여섯 가지의 온라인 뉴스 콘텐츠의 체계적 속성을 도출하였으며, 내용분석(content analysis)을 통해 각 기사의 속성값을 측정하고 이를 기반으로 컨조인트 분석(conjoint analysis)을 실시하여 속성 간 상대적 중요도를 계산 및 검증하였다. PWYW 모델이 적용된 온라인 뉴스 콘텐츠 379개에 대한 컨조인트 분석 결과, 기사 가독성, 기사 내용-이미지 유사성, 기사제목 유형 등의 순으로 자발적 독자구독료에 큰 영향을 주는 것으로 분석된 반면, 기사 유형, 기사 지배적 정서, 기사 이미지 자극성 등은 상대적으로 낮은 중요도를 보이는 것으로 조사되었다. 본 연구는 내용분석과 컨조인트 분석을 동시에 실시하여 온라인 뉴스 콘텐츠에 대한 자발적 지불의도에 영향을 미치는 체계적 요인을 도출하고, 그 상대적 중요도까지 살펴보았다는 점에서 학술적 의의가 있으며, 온라인 뉴스 콘텐츠 제작자 및 사이트 운영자들로 하여금 독자들의 자발적 지불을 유도할 수 있는 가이드라인을 제시하였다는 점에서 그 실무적 의의가 있다.
지난 10여 년간 딥러닝(Deep Learning)은 다양한 기계학습 알고리즘 중에서 많은 주목을 받아 왔다. 특히 이미지를 인식하고 분류하는데 효과적인 알고리즘으로 알려져 있는 합성곱 신경망(Convolutional Neural Network, CNN)은 여러 분야의 분류 및 예측 문제에 널리 응용되고 있다. 본 연구에서는 기계학습 연구에서 가장 어려운 예측 문제 중 하나인 주식시장 예측에 합성곱 신경망을 적용하고자 한다. 구체적으로 본 연구에서는 그래프를 입력값으로 사용하여 주식시장의 방향(상승 또는 하락)을 예측하는 이진분류기로써 합성곱 신경망을 적용하였다. 이는 그래프를 보고 주가지수가 오를 것인지 내릴 것인지에 대해 경향을 예측하는 이른바 기술적 분석가를 모방하는 기계학습 알고리즘을 개발하는 과제라 할 수 있다. 본 연구는 크게 다음의 네 단계로 수행된다. 첫 번째 단계에서는 데이터 세트를 5일 단위로 나눈다. 두 번째 단계에서는 5일 단위로 나눈 데이터에 대하여 그래프를 만든다. 세 번째 단계에서는 이전 단계에서 생성된 그래프를 사용하여 학습용과 검증용 데이터 세트를 나누고 합성곱 신경망 분류기를 학습시킨다. 네 번째 단계에서는 검증용 데이터 세트를 사용하여 다른 분류 모형들과 성과를 비교한다. 제안한 모델의 유효성을 검증하기 위해 2009년 1월부터 2017년 2월까지의 약 8년간의 KOSPI200 데이터 2,026건의 실험 데이터를 사용하였다. 실험 데이터 세트는 CCI, 모멘텀, ROC 등 한국 주식시장에서 사용하는 대표적인 기술지표 12개로 구성되었다. 결과적으로 실험 데이터 세트에 합성곱 신경망 알고리즘을 적용하였을 때 로지스틱회귀모형, 단일계층신경망, SVM과 비교하여 제안모형인 CNN이 통계적으로 유의한 수준의 예측 정확도를 나타냈다.
기업 경영에 있어서 고객의 소리(VOC)는 고객 만족도 향상 및 기업의사결정에 매우 중요한 정보이다. 이는 비단 기업뿐만 아니라 대고객, 대민원 업무를 처리하는 모든 조직에 있어서도 동일하다. 때문에 최근에는 기업뿐만 아니라 공공, 의료, 금융, 교육기관 등 거의 모든 조직이 VOC를 수집하여 활용하고 있다. 이러한 VOC는 방문, 전화, 우편, 인터넷게시판, SNS 등 다양한 채널을 통해 전달되지만, 막상 이를 제대로 활용하기는 쉽지 않다. 왜냐하면, 고객이 매우 감정적인 상태에서 고객의 주관적 의사를 음성 또는 문자로 표출하기 때문에 그 형식이나 내용이 정형화되어 있지 않고 저장하기도 어려우며 또한 저장하더라도 매우 방대한 분량의 비정형 데이터로 남기 때문이다. 본 연구는 이러한 비정형 VOC 데이터를 자동으로 분류하고 VOC의 유형과 극성을 판별할 수 있는 오피니언 마이닝 기반의 지능형 VOC 분석 시스템을 제안하였다. 또한 VOC 오피니언 분석의 기준이 되는 주제지향 감성사전 개발 프로세스와 각 단계를 구체적으로 제시하였다. 그리고 본 연구에서 제시한 시스템의 효용성을 검증하기 위하여 의료기관 홈페이지에서 수집한 4,300여건의 VOC 데이터를 이용하여 병원에 특화된 감성어휘와 감성극성값을 도출하여 감성사전을 구축하고 이를 통해 구현된 VOC분류 모형의 정확도를 비교하는 실험을 수행하였다. 그 결과 "칭찬, 친절함, 감사, 무사히, 잘해, 감동, 미소" 등의 어휘는 매우 높은 긍정 오피니언 값을 가지며, "퉁명, 뭡니까, 말하더군요, 무시하는" 등의 어휘들은 강한 부정의 극성값을 가지고 있음을 확인하였다. 또한 VOC의 오피니언 분류 임계값이 -0.50일 때 가장 높은 분류 예측정확도 77.8%를 검증함으로써 오피니언 마이닝 기반의 지능형 VOC 분석시스템의 유효성을 확인하였다. 그러므로 지능형 VOC 분석시스템을 통해 VOC의 실시간 자동 분류 및 대응 우선순위를 도출하여 고객 민원에 대해 신속히 대응한다면, VOC 전담 인력을 효율적으로 운용하면서도 고객 불만을 초기에 해소할 수 있는 긍정적 효과를 기대해 볼 수 있을 것이다. 또한 VOC 텍스트를 분석하고 활용할 수 있는 오피니언 마이닝 모형이라는 새로운 시도를 통해 향후 다양한 분석과 실용 프레임워크의 기틀을 제공할 수 있을 것으로 기대된다.
최근 인터넷 기반의 웹 및 모바일 기기를 통한 소비 패턴의 다양화와 개성화가 급진전됨에 따라 전통적 유통채널인 오프라인 매장의 효율적 운영이 더욱 중요해졌다. 매장의 매출과 수익 모두를 제고하기 위해 매장은 소비자에게 가장 매력적인 상품을 적시에 공급-판매 해야 하는데 많은 상품들 중에서 어떤 SKU를 취급하는 것이 판매 확률을 높이고 재고 비용을 낮출 수 있는지에 대한 연구가 부족한 실정이다. 특히, 여러 지역에 걸쳐 다수의 오프라인 매장을 통해 상품을 판매하는 기업의 경우 고객에게 매력적인 적절한 SKU를 추천 받아 취급할 수 있다면 매장의 매출 및 수익률 제고에 도움이 될 것이다. 본 연구에서는 개인화 추천에 이용되어 왔던 협업 필터링과 하이브리드 필터링 등의 추천 시스템(Recommender System)을 국가별, 지역별로 복수의 판매 매장을 통해 동종 브랜드를 취급하는 유통 기업의 매장 단위 취급 SKU 추천 방식을 제안하였다. 각 매장의 취급 품목별 구매 데이터를 활용하여 각 매장 별 유사성(Similarity)을 계산하고 각 매장의 SKU별 판매 이력에 따라 협업 필터링을 하여 최종적으로 매장에 개별 SKU를 추천하였다. 또한 매장 프로파일 데이터를 활용하여 주변수 분석 (PCA : Principal Component Analysis) 및 군집 분석(Clustering)을 통하여 매장을 4개의 군집으로 분류한 뒤 각 군집 내에서 협업 필터링을 적용한 하이브리드 필터링 방식으로 추천 시스템을 구현하고 실제 판매 데이터를 바탕으로 두 방식의 성능을 측정하였다. 현존하는 대부분의 추천 시스템은 사용자에게 영화, 음악 등의 아이템을 추천하는 방식으로 연구가 진행되어 왔고 실제로 산업계에서의 적용 또한 개인화 추천 시스템이 주류를 이루고 있다. 그 동안 개인화 서비스 영역에서 주로 다루어져 왔던 이러한 추천 시스템을 동종 브랜드를 취급하는 유통 기업의 매장 단위에 적용하여 각 매장의 취급 SKU를 추천하는 방식에 대한 연구는 거의 이루어지지 않고 있는 실정이다. 기존 추천 방법론의 추천 적용 대상이 '개인의 영역이었다면 본 연구에서는 국가별, 지역별로 복수의 판매 매장을 통해 개인의 영역을 넘어 매장의 영역으로 확대하여 동종 브랜드를 취급하는 유통 기업의 매장 단위 취급 SKU 추천 방식을 제안하고 있다. 또한 기존의 추천시스템은 온라인에 한정되었다면 이를 오프라인으로 활용 범위를 넓히고, 기존 개인을 기반으로 분석을 하는 것보다 매장영역으로 확대 적용하기에 적합한 알고리즘을 개발하기 위해 데이터마이닝 기법을 적용하여 추천 방법을 제안한다. 본 연구의 결과가 갖는 의의는 개인화 추천 알고리즘을 동일 브랜드를 취급하는 복수의 판매 매장에 적용하여 의미 있는 결과를 도출하고 실제 기업을 대상으로 시스템으로 구축하여 활용할 수 있는 구체적 방법론을 제시했다는 데에 있다. 개인화 영역을 위주로 이루어졌던 기존의 추천 시스템과 관련한 학계의 연구 영역을 동종 브랜드를 취급하는 기업의 판매 매장으로 확장시킨 첫 시도라는 데에도 의미가 있다. 2014년 03주차 ~ 05주차 전(全) 매장 판매 수량 실적 Top 100개 SKU로 추천의 대상을 한정하여 협업 필터링과 하이브리드 필터링 방식으로 52개 매장 별로 취급 SKU를 추천하고, 추천 받은 SKU에 대한 2014년 06주차 매장별 판매 실적을 집계하여 두 추천 방식의 성과를 비교하였다. 두 추천 방식을 비교한 이유는 본 연구의 추천 방법이 기존 추천 방식 보다 높은 성과를 입증하기 위해 단순히 오프라인에 협업필터링을 적용한 것을 기준 모델로 정의하였다. 이 기준 모델에 오프라인 매장 관점의 특성을 잘 반영한 본 연구 모델인 하이브리드 필터링 방법과 비교 함으로써 성과를 입증한다. 연구에서 제안한 방식은 기존 추천 방식보다 높은 성과를 나타냈으며, 이는 국내 대기업 의류업체의 실제 판매데이터를 활용하여 입증하였다. 본 연구는 개인 수준의 추천시스템을 그룹수준으로 확장하여 효율적으로 접근하는 방법을 이론적인 프레임 워크를 만들었을 뿐 아니라 실제 데이터를 기반으로 분석하여 봄으로써 실제 기업들이 적용해 볼 수 있다는 점에서 연구의 가치가 크다.
본 연구는 인터넷쇼핑몰 비주얼 머천다이징의 주요차원을 고객이 쇼핑몰에 진입한 후 정보탐색과 대안평가를 거치는 등의 쇼핑과정을 토대로 AIDA모형 관점에서 점포, 제품, 촉진에 초점을 맞추었다. VMD의 주요차원(primary dimensions)으로는 점포디자인, 머천다이징, 그리고 머천다이징단서로 구분하였다. 선행연구 결과를 토대로 점포다자인의 하위차원으로는 차별성, 간결성, 위치확인성을, 머천다이즈의 하위차원으로는 제품구색, 명성, 정보성을, 그리고 머천다이징단서의 하위차원으로는 제품추천 및 링크를 설정하여 VMD태도와의 관계를 탐색적으로 조사하였다. 연구결과 이들 세 차원은 종속변수에 유의한 정의 영향을 미치는 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.