• Title/Summary/Keyword: Channel Monitoring Mechanism

Search Result 16, Processing Time 0.03 seconds

Priority Based Multi-Channel MAC Protocol for Real-Time Monitoring of Weapon Flight Test Using WSNs

  • Min, Joonki;Kim, Joo-Kyoung;Kwon, Youngmi;Lee, Yong-Jae
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.18-27
    • /
    • 2013
  • Real-time monitoring is one of the prime necessities in a weapon flight test that is required for the efficient and timely collection of large amounts of high-rate sampled data acquired by an event-trigger. The wireless sensor network is a good candidate to resolve this requirement, especially considering the inhospitable environment of a weapon flight test. In this paper, we propose a priority based multi-channel MAC protocol with CSMA/CA over a single radio for a real-time monitoring of a weapon flight test. Multi-channel transmissions of nodes can improve the network performance in wireless sensor networks. Our proposed MAC protocol has two operation modes: Normal mode and Priority Mode. In the normal mode, the node exploits the normal CSMA/CA mechanism. In the priority mode, the node has one of three grades - Class A, B, and C. The node uses a different CSMA/CA mechanism according to its grade that is determined by a signal level. High grade nodes can exploit more channels and lower backoff exponents than low ones, which allow high grade nodes to obtain more transmission opportunities. In addition, it can guarantee successful transmission of important data generated by high grade nodes. Simulation results show that the proposed MAC exhibits excellent performance in an event-triggered real-time application.

Practical Use of Tissue Biosensor for Safety Test of Marine Organism and Monitoring of Public Health and Environment (해양 유독생물의 독성 검사와 보건환경 모니터링을 위한 조건센서의 활용)

  • 천병수;유종수;유진형;도변탈생
    • KSBB Journal
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 1999
  • It confirmed the facilitated diffusion of $Na^+$ of frog bladder membrane which is a tissue membrane. The mechanism was explained in $Na^+$ channel model and its referred to the $Na^+$ channel obstruction ingredient which was contained in the reference to the $Na^+$ channel obstruction ingredient and son on, e.g., seaweed, shellfish, pufferfish, phytoplankton and chinese drug. Also, it introduces the result which studied from the barrier point of the application of the tissue biosensor to the trade friction on Korea or Japan pufferfish and the marine environment in the one with high dependance. It was possible for the poison quantity of small amount pufferfish toxin (TTX), paralytic shellfish poisoning (PSP) to be measured and also to measure poison quantity in the cultivation poisonous toxin phytoplankton individual. In future, as for this tissue biosensor, it expects that it is possible to contribute widely until environment watch and also monitoring to the scene.

  • PDF

A multi-radio sink node designed for wireless SHM applications

  • Yuan, Shenfang;Wang, Zilong;Qiu, Lei;Wang, Yang;Liu, Menglong
    • Smart Structures and Systems
    • /
    • v.11 no.3
    • /
    • pp.261-282
    • /
    • 2013
  • Structural health monitoring (SHM) is an application area of Wireless Sensor Networks (WSNs) which usually needs high data communication rate to transfer a large amount of monitoring data. Traditional sink node can only process data from one communication channel at the same time because of the single radio chip structure. The sink node constitutes a bottleneck for constructing a high data rate SHM application giving rise to a long data transfer time. Multi-channel communication has been proved to be an efficient method to improve the data throughput by enabling parallel transmissions among different frequency channels. This paper proposes an 8-radio integrated sink node design method based on Field Programmable Gate Array (FPGA) and the time synchronization mechanism for the multi-channel network based on the proposed sink node. Three experiments have been performed to evaluate the data transfer ability of the developed multi-radio sink node and the performance of the time synchronization mechanism. A high data throughput of 1020Kbps of the developed sink node has been proved by experiments using IEEE.805.15.4.

Realtime Wireless Sensor Line Protocol for Forest Fire Monitoring System (실시간 센서 네트워크 프로토콜을 이용한 산불 모니터링 시스템의 구현)

  • Kim, Jae-Ho;Lee, Sang-Shin;Ahn, Il-Yeup;Kim, Tae-Hyun;Won, Kwang-Ho;Kim, Seong-Dong
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1031-1034
    • /
    • 2005
  • This paper introduces a novel sensor network protocol, R-WSLP(Realtime Wireless Sensor Line Protocol), which has extremely low latency characteristic in large-scale WSN. R-WSLP is proposed to implement realtime forest fire monitoring system. We propose Distributed TDMA method for the multiple channel access and Time Synchronized Forwarding Mechanism instead of routing technique to achieve low latency network. Also, R-WSLP provides extremely low power operation which we accomplished by reducing idle listening. In our experimentation, we get successful results at the forest fire monitoring system with our protocol.

  • PDF

Turbulent-image Restoration Based on a Compound Multibranch Feature Fusion Network

  • Banglian Xu;Yao Fang;Leihong Zhang;Dawei Zhang;Lulu Zheng
    • Current Optics and Photonics
    • /
    • v.7 no.3
    • /
    • pp.237-247
    • /
    • 2023
  • In middle- and long-distance imaging systems, due to the atmospheric turbulence caused by temperature, wind speed, humidity, and so on, light waves propagating in the air are distorted, resulting in image-quality degradation such as geometric deformation and fuzziness. In remote sensing, astronomical observation, and traffic monitoring, image information loss due to degradation causes huge losses, so effective restoration of degraded images is very important. To restore images degraded by atmospheric turbulence, an image-restoration method based on improved compound multibranch feature fusion (CMFNetPro) was proposed. Based on the CMFNet network, an efficient channel-attention mechanism was used to replace the channel-attention mechanism to improve image quality and network efficiency. In the experiment, two-dimensional random distortion vector fields were used to construct two turbulent datasets with different degrees of distortion, based on the Google Landmarks Dataset v2 dataset. The experimental results showed that compared to the CMFNet, DeblurGAN-v2, and MIMO-UNet models, the proposed CMFNetPro network achieves better performance in both quality and training cost of turbulent-image restoration. In the mixed training, CMFNetPro was 1.2391 dB (weak turbulence), 0.8602 dB (strong turbulence) respectively higher in terms of peak signal-to-noise ratio and 0.0015 (weak turbulence), 0.0136 (strong turbulence) respectively higher in terms of structure similarity compared to CMFNet. CMFNetPro was 14.4 hours faster compared to the CMFNet. This provides a feasible scheme for turbulent-image restoration based on deep learning.

A New Framework of 6lowpan node for Neighboring Communication with Healthcare Monitoring Applications

  • Singh, Dhananjay;Lee, Hoon-Jae;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.281-286
    • /
    • 2009
  • The proposed technique uses cyclic frame structure, where three periods such as beacon period (BP), mesh contention access period (MCAP) and slotted period (SP) are in a data frame. This paper studies on a mechanism to allow communication nodes (6lowpan) in a PAN with different logical channel for global healthcare applications monitoring technology. The proposed super framework structure system has installed 6lowpan sensor nodes to communicate with each other. The basic idea is to time share logical channels to perform 6lowpan sensor node. The concept of 6lowpan sensor node and various biomedical sensors fixed on the patient BAN (Body Area Network) for monitoring health condition. In PAN (hospital area), has fixed gateways that received biomedical data from 6lowpan (patient). Each 6lowpan sensor node (patient) has IP-addresses that would be directly connected to the internet. With the help of IP-address service provider can recognize or analyze patient data from all over the globe by the internet service provider, with specific equipments i.e. cell phone, PDA, note book. The NS-2.33 result shows the performance of data transmission delay and data delivery ratio in the case of hop count in a PAN (Personal Area Networks).

  • PDF

An Enhanced Mechanism of Security Weakness in CDMA Service (CDMA 서비스의 보안취약성과 개선방안)

  • Ryu, Dae-Hyun;Jang, Seung-Ju
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.6
    • /
    • pp.729-742
    • /
    • 2003
  • Mobile Communication has a possibility of eavesdropping by nature of wireless channel. It is known that eavesdropping of CDMA system is impossible because the voice data spreads with the PN. First of all, we show that it is possible to eavesdrop the CDMA channel by analysis of the forward channel in case that we know the ESN and the MIN. We can monitor the forward traffic channel with easy since ESN and MIN are exposed during the call processing in CDMA service in Korea. In this paper, we will show security weakness and propose an enhanced mechanism for CDMA service. We consider the problem of security in the CDMA service. CDMA system has wireless channels to transmit voice or data. By this reason, CDMA communication has a possibility of being eavesdropped by someone. It is known that eavesdropping in CDMA system is impossible because the voice data spreads with the PN. However, we can eavesdrop the CDMA data in FCM protocol in case that we know the ESN and the MIN. In CDMA system, ESN and MIN are exposed to the wireless channel. In this paper, we analyze the flow of the voice and signal in the CDMA system and monitor the forward traffic channel by the FCM protocol. The FCM protocol is proposed to monitor the forward channel in CDMA system. We can show the possibility of monitoring in one-way channel of CDMA system by the FCM protocol. The test instrument based on the FCM protocol is proposed to monitor the CDMA forward channel. We will show the system architecture of the test instrument to monitor the forward channel in CDMA.

IEEE 802.15.4 MAC-based Location-ID Exchange Protocol for Realizing Micro-Cell Connectionless Location- Awareness Services

  • Kim, Baek-Gyu;Kang, Soon-Ju
    • Journal of Computing Science and Engineering
    • /
    • v.2 no.4
    • /
    • pp.412-427
    • /
    • 2008
  • We propose ID-exchange protocol for Connectionless Location-Awareness Service (CLAS) to locate mobile nodes in indoor sensor network. When adapting location-awareness service to sensor network, the target system must be designed in accordance with various metrics which reflect the system requirement. We especially consider sustainability of the existing service which has been provided for its original purpose, such as environmental monitoring. The detailed meaning of sustainability here is that, even if location-awareness service is newly added to the existing service, the system must be assured to retain a stable network condition, and to deal with newly caused traffic properly. The CLAS ID-exchange protocol is especially designed for fixture and mobile nodes communication to achieve these properties. The protocol operates on 802.15.4 MAC layer to make mobile node work independently of the procedure to build routing table of fixture node, so a stable routing condition can be achieved even if there are many mobile nodes. Moreover, the dedicated frequency channel is assigned only for this protocol, so that traffic caused by location-awareness service can be distributed to another channel. A real system adapting the protocol was implemented to monitor fire and authorities' positions. We verified the overhead and elapsed time for location-awareness. The result shows the proposed protocol has a high performance in detecting speed, traffic distribution, and stability of overall network.

Monitoring-based Coordination of Network-adaptive FEC for Wireless Multi-hop Video Streaming (무선 멀티 홉 비디오 스트리밍을 위한 모니터링 기반의 네트워크 적응적 FEC 코디네이션)

  • Choi, Koh;Yoo, Jae-Yong;Kim, Jong-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.2A
    • /
    • pp.114-126
    • /
    • 2011
  • Video streaming over wireless multi-hop networks(WMNs) contains the following challenges from channel fading and variable bandwidth of wireless channel, and it cause degradation of video streaming performance. To overcome the challenges, currently, WMNs can use Forward Error Correction (FEC) mechanism. In WMNs, traditional FEC schemes, E2E-FEC and HbH-FEC, for video streaming are applied, but it has long transmission delay, high computational complexity and inefficient usage of resource. Also, to distinguish network status in streaming path, it has limitation. In this paper, we propose monitoring-based coordination of network-adaptive hop-to-end(H2E) FEC scheme. To enable proposed scheme, we apply a centralized coordinator. The coordinator has observing overall monitoring information and coordinating H2E-FEC mechanism. Main points of H2E-FEC is distinguishing operation range as well as selecting FEC starting node and redundancy from monitored results in coordination. To verify the proposed scheme, we perform extensive experiment over the OMF(Orbit Measurement Framework) and IEEE 802.1la-based multi-hop WMN testbed, and we carry out performance improvement, 17%, from performance comparison by existing FEC scheme.

MANIFESTATIONS OF THE INDIAN OCEAN TSUNAMI OF 2004 IN SATELLITE NADIR-VIEWING RADAR BACKSCATTER VARIATIONS

  • Troitskaya, Yuliya I.;Ermakov, Stanislav A.
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.39-42
    • /
    • 2006
  • The paper reports on the first experimental evidence for space-observed manifestation of the open ocean tsunami in the microwave radar backscatter (in C- and Ku-bands). Significant variations of the radar cross section synchronous with the sea level anomaly were found in the geophysical data record of the altimetry satellite Jason-1 for the track which crossed the head wave of the catastrophic tsunami of 26 December 2004. The simultaneous analysis of the available complementary data provided by the satellite three-channel radiometer enabled us to exclude meteorological factors as possible causes of the observed signal modulation. A possible physical mechanism of modulation of short wind waves due to transformation of the thin boundary layer in the air by a tsunami wave is discussed. The results open new possibilities of monitoring tsunamis from space..

  • PDF