• Title/Summary/Keyword: Changes of microflora

Search Result 120, Processing Time 0.038 seconds

Reduction of Microflora in the Manufacture of Saengshik by Hygienic Processing

  • Bang, Woo-Seok;Eom, Young-Rhan;Oh, Deog-Hwan
    • Preventive Nutrition and Food Science
    • /
    • v.12 no.3
    • /
    • pp.167-172
    • /
    • 2007
  • This study was conducted to determine the effect of hygienic processing (HP) on the reduction of microorganisms during manufacturing of saengshik with two vegetables (carrots and cabbage) and two grains (barely and glutinous rice) compared to general processing (GP). For GP, distilled water was used for washing raw materials and equipment. For HP, aqueous ozone (3 ppm) in combination with 1% citric acid and 70% alcohol were used for washing raw materials and the equipment, respectively. In carrots, after cutting, total aerobic bacteria (TAB), yeast and mold (YM) and coliforms were significantly increased to 5.19, 8.04 and 2.08 ($log_{10}$ CFU/g), respectively (p<0.05). Washing effectively reduced the increased microorganisms from cross contamination during cutting, but cross contamination increased with subsequent GP drying and milling procedures to 8.56, 8.27 and 3.71 ($log_{10}$ CFU/g) for TAB, YM and coliforms, respectively (p<0.05). On the other hand, HP washing of carrots with 3 ppm ozone in combination with 1% citric acid showed higher antimicrobial effect than GP washing, significantly decreasing the number of microorganisms (p<0.05). Further cross contamination did not occur through drying and milling due to cleaning the equipments with 70% alcohol prior to processing. After milling, the number of TAB, YM and coliforms were significantly decreased to 3.89, 4.47 and not detectable level ($log_{10}$ CFU/g), respectively (p<0.05). Similar results were observed in cabbage and grains. During storage for two months at different temperatures (22 or $4^{\circ}C$), there were no changes in numbers of spoilage microorganisms in the packaged saengsik after either processing. This suggests the importance of HP for the reduction of microorganisms during saengsik production, and demonstrates the effectiveness of disinfection at each processing stage in minimizing contamination levels to enhance microbial safety of saengshik products.

Growth of Seeded Escherichia coli in Rewetted Cattle Waste Compost of Different Stages

  • Hanajima, D.;Kuroda, K.;Fukumoto, Y.;Haga, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.2
    • /
    • pp.278-282
    • /
    • 2004
  • Compost is used mainly as an organic fertilizer, but it is also used as bedding material for cattle. Dairy cattle have been identified as a main reservoir of pathogenic Escherichia coli O157:H7. Further, E. coli is regarded as an environmental pathogen that causes bovine clinical mastitis. Hence, its growth in compost spread or compost bedding should be avoided. Physical and chemical conditions, available nutrients and microflora in compost change greatly during the composting process. Since pathogen growth in compost seems to be related to these changes, we assessed the possibility of E. coli growth in compost samples collected at 0, 7, 13, 22, 41, 190 and 360 d. Cattle waste composts with and without added tofu residue were collected from static piles and immediately air-dried. Compost samples were inoculated with a pure culture of E. coli, the moisture content was adjusted to 50%, and the samples were incubated for 5 d at $30^{\circ}C$. The numbers of E. coli in compost before and after incubation were determined by direct plating on Chromocult coliform agar. Almost all compost samples supported E. coli growth. Samples collected during or immediately after the thermophilic phase (day 7) showed the highest growth. Growth in samples more than 13 d old were not significantly different from those of aged compost samples. The addition of tofu residue gave a higher growth than its absence in younger samples collected prior to 13 d. To minimize the risk of environmental mastitis, the use of compost in the initial stage of the process is better avoided.

The Development of Squid(Todarodes pacificus) Sik-hae in Kang-Nung District -2. The Effects of Fermentation Temperatures and Periods on Chemical and Microbial Changes, and the Partial Purification of Pretense- (강릉지방의 오징어 식해 개발에 관한 연구 -2. 숙성온도 및 기간에 따른 화학적 변화, 미생물 변화 및 단백질 분해 효소의 정제-)

  • KIM Sang-Moo;CHO Young-Je;LEE Keun-Tai
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.3
    • /
    • pp.223-231
    • /
    • 1994
  • In order to develop the squid(Todarodes pacificus) sik-hae, the changes of TBA, fatty acids, free amino acids, and the number of microflora fermented at different fermentation temperatures and periods were determined. In addition, pretense from squid sik-hae was partially purified. The number of TBA was the highest after 5-day storage and decreased after that, and lipid oxidation was the highest at $10^{\circ}C$. The amounts of linoleic aid(18:2) and oleic acid (18:1) were about $60\%$ of fatty acid composition of squid sik-hae, and linolenic acid(18:3) and EPA(20:5) significantly decomposed with increasing fermentation periods and temperatures. Pro, His, Aeg, Leu, and Glu were composed mainly of amino acid and the composition ratios of Ser, His, and Arg decreased with increasing fermentation periods whereas, those of Glu, Ala, Val, and Tyr increased. The composition ratios of Glu, Val, and Met increased with increasing fermentation temperatures whereas, those of Ala, Cys, Thr, and Gly decreased. The number of microflora generally increased up to 15-days of storage and decreased after that. The rates of increass and decreass of the microbial number increased in proportion to fermentation temperatures. In addition, the bacteria producing proteases were identified as Bacillus spp. Proteases from $60{\sim}80\%$ ammonium sulfate concentration showed the highest activity and had about 15 binds with molecular weights between 20,000 and 40,000 Dalton by the SDS-PAGE.

  • PDF

The Study on the Relationship between Changes of Rumen Microflora and Bloat in Jersey Cow (저지종 젖소의 반추위 내 미생물 균총 변화와 고창증 발병간의 상관관계 연구)

  • Kim, Sang Bum;Oh, Jong Seok;Jeong, Ha Yeon;Jung, Young Hun;Park, Beom Young;Ha, Seung Min;Im, Seok Ki;Lee, Sung Sill;Park, Ji Hoo;Park, Seong Min;Kim, Eun Tae
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.38 no.2
    • /
    • pp.106-111
    • /
    • 2018
  • This study was conducted to investigate the relationship between changes of rumen microflora and bloat in Jersey cow. Jersey cows (control age: 42 months, control weight: 558kg; treatment age: 29 months, treatment weight 507kg) were fed on the basis of dairy feeding management at dairy science division in National Institute of Animal Science. The change of microbial population in rumen was analyzed by using next generation sequencing (NGS) technologies due to metabolic disease. The diversity of Ruminococcus bromii, Bifidobacterium pseudolongum, Bifidobacterium merycicum and Butyrivibrio fibrisolvens known as major starch fermenting bacteria was increased more than 36-fold in bloated Jersey, while cellulolytic bacteria community such as Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens was increased more than 12-fold in non-bloated Jersey. The proportion of bacteroidetes and firmicutes was 33.4% and 39.6% in non-bloated Jersey's rumen, while bacteroidetes and firmicutes were 24.9% and 55.1% in bloated Jersey's. In conclusion, the change of rumen microbial community, in particular the increase in starch fermenting bacteria, might have an effect to occur the bloat in Jersey cow.

Effects of D-Tagatose on the Growth of Intestinal Microflora and the Fermentation of Yogurt (장내 세균의 생육과 요구르트의 발효특성에 대한 D-Tagatose의 영향)

  • Kang, Kyoung-Myoung;Park, Chang-Su;Lee, Shin-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.3
    • /
    • pp.348-354
    • /
    • 2013
  • To investigate the effect of tagatose on the growth of intestinal bacteria, various species were cultivated individually on m-PYF medium containing tagatose as a carbon source. The tagatose inhibited the growth of intestinal harmful microorganisms such as Staphylococcus aureus subsp. aureus, Listeria monocytogenes, Vibrio parahaemolyticus, Salmonella Typhimurium, and Pseudomonas fluorescens. In the case of beneficial microorganisms found in the intestine, Lactobacillus casei grew effectively on m-PYF medium containing tagatose, while Lactobacillus plantarum, Lactobacillus brevis, Leuconostoc citreum, and Lactobacillus acidophilus did not. To examine the effect of tagatose on fermentation by Lactobacillus casei, yogurt was prepared with tagatose as a carbon source. The resulting acid production stimulated a remarkable growth of lactic acid bacteria in the yogurt. After fermentation for 24 hours, the viable cell count and viscosity of yogurt were above 8.49 log CFU/mL and 1,266 cps, respectively. Moreover, sensory evaluations showed that the yogurt supplemented with tagatose was as acceptable as control yogurt prepared with glucose as a carbon source. The changes in pH, titratable acidity and lactic acid bacteria in yogurt prepared with tagatose did not show any significant changes during storage for 15 days at $4^{\circ}C$.

Effects of Lactobacillus acidophilus Intake on Microfloral Changes in Human Feces (Lactobacillus acidophilus의 섭취가 사람의 분변 균총에 미치는 영향)

  • Jung, Eun-Ji;Ahn, Young-Tae;Kim, Hyun-Uk
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1642-1647
    • /
    • 1999
  • Twenty healthy adult volunteers (divided into two groups) were given with 100 mL of acidophilus milk, twice a day, containing $1{\times}10^8\;cfu/mL$ of Lactobacillus acidophilus SNUL 01 or SNUL 02 originated from healthy Korean adults. The floral changes of lactobacilli, Escherichia coli, and Clostridium perfringens surviving in the feces as well as the pH of the fecal material have been studied for three weeks. Initial pH of the fecal samples before taking acidophilus milk were about pH 7 and it has been decreased to about pH 5 when the acidophilus milk was given. Population of fecal lactobacilli increased from about $10^7\;cfu/g\;to\;10^8\;cfu/g$ of fecal material after 4 days of acidophilus milk intake and the high population of lactobacilli was maintained up to 21 days. Viable cells of the fecal E. coli and C. perfringens have been decreased from about $10^7{\sim}10^8\;cfu/g\;and\;10^5{\sim}10^6\;cfu/g\;to\;10^6\;cfu/g\;and\;10^3\;cfu/g$ of fecal material after 21 days, respectively. In conclusion, continuous intake of acidophilus milk made with L. acidophilus SNUL 01 and SNUL 02 helped maintaining normal intestinal microflora, suppress harmful microorganisms.

  • PDF

Changes of Chemical Composition and Microflora in Commercial Kimchi (시판 김치의 발효 온도별 성분과 미생물 변화)

  • Shin, Dong-Hwa;Kim, Moon-Sook;Han, Ji-Sook;Lim, Dae-Kwan;Bak, Wan-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.137-145
    • /
    • 1996
  • Chemical changes, lactic acid bacteria and yeast counts in kimchi prepared by a commercial manufacturer in large scale were monitored at different fermentation temperature. The optimum pH of kimchi, around pH 4.2, reached within 2 days at $25^{\circ}C$, 3 days at $15^{\circ}C$ and 23 days at $5^{\circ}C$ fermentation, respectively. The optimum acidity calculated as lactic acid was not exactly coincident with pH. The total viable count reached at maximum within 2 days at $25^{\circ}C$, 6 days at $15^{\circ}C$ and 12 days at $5^{\circ}C$ fermentation, respectively. The identified strains of Lactobacilli during kimchi fermentation were L. brevis, L. plantarum and L. acidophilus with 3 unidentified strains. L. brevis, L. plantarum appeared from the first stage of fermentation to the terminal at $15^{\circ}C$ and $25^{\circ}C$ with keeping a constant level of viable number. In case of Leuconostoc species, L. mesenteroides subsp. mesenteroides was identified. This strain increased in viable number at the beginning of fermentation and dropped sharply at all fermentation temperatures. Pediococcus species including P. pentosaceus and one unidentified strain increased at the first stage of fermentation and decreased after on. Streptococcus faecium subsp. casseliflavus which appeared at the middle stage and Aerococcus viridans which was sole strain were also confirmed during kimchi fermentation. Cryptococcus laurenti was identified at all fermentation temperature and disappeared at the first stage of fermentation. It was reappeared 10 days only after fermentation at $25^{\circ}C$.

  • PDF

The Changes of Quality and Microflora during the Preservation of Korean Takju (탁주(濁酒) 보존중(保存中) 품질변화(品質變化)와 미생물군(微生物群) 소장(消長))

  • Jung, Ji-Heun;Jung, Soon-Teck
    • Applied Biological Chemistry
    • /
    • v.28 no.4
    • /
    • pp.252-260
    • /
    • 1985
  • The changes of the qualities and the components of 5 different Takju (Korean wine) in various stroage temperatures were evaluated. Commercial Takju didn't change in acidity and alcoholic degree at $5{\sim}10^{\circ}C$ for 36 hours. But at $30{\sim}35^{\circ}C$ the alcohollic degree has inversed to $5.0{\sim}7.0$. As time went by, pH nearly went down to pH 3.7 and went up back over 4.0. Amino acidity was risen continuously during the stroage terms and the change of reducing sugar was irregular. The number of vegetable cell of yeast in commercial Takju at $30{\sim}35^{\circ}C$ after 18 hours was $2.4{\times}10^8$, at $5{\sim}10^{\circ}C$ after 36 hours $2.4{\times}10^8$, and each of them was reduced below $1{\times}10^8$ after exceeding the limit of shelf-life. Number of general bacteria was increased suddenly in a high temperature at the first and it was decreased afterwards, but the tendency of increase and decrease was slow in a low temperature. It was possible to keep the quality for 5 days at $5{\sim}10^{\circ}C$ in case of commercial Takju and the shelf-life of pasteurized Takju was extended over 7 days.

  • PDF

The Influence of Pesticides on Some Chemical and Microbiological Properties Related to Soil Fertility II. Effects of CNP Herbicide on Soil Microflora (농약제(農藥劑)의 시용(施用)이 토양(土壤)의 비옥성(肥沃性) 및 미생물상(微生物相)에 미치는 영향(影響) II. CNP 제초제시용(除草劑施用)이 토양미생물(土壤微生物) flora에 미치는 효과(效果))

  • Ryu, Jin-Chang;Araragi, Michio;Koga, Hiroshi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.1
    • /
    • pp.67-76
    • /
    • 1984
  • This experiment was conducted to find out the changes in microflora of submerged soil uncultivated rice plant by application of CNP herbicide (2, 4, 6 - Trichlorophenyl-4-Nitrophenyl ether) under conditions applied with compost, rice straw, glucose or without organic material. The soil, sandy loam textured was incubated in green house for 66 days. Sampling and analysis of microorganisms were carried out during submergence periods. The results were summarilized as follows. 1. Number of aerobic total bacteria was increased by application of CNP herbicide during submerbed 50 days, afterthen, could not seen the difference. The application of rice straw increased number of aerobic bacteria regardless of CNP herbicide application or not, but glucose tended to decrease. 2. Number of Fungi was constantly maintained at $8-20{\times}10^3$ levels during period of submergence regardless of application of CNP herbicide and organic materials or not. 3. The CNP herbicide application tended to decrease the number of actinomycetes, particularly, in the treatments without organic substances and rice straw were remarkably decreased. 4. Anaerobic-and gram-negative bacteria populations were not showed any difference by application of herbicide and organic materials. 5. The ratios of aerobic bacteria to fungi and aerobic bacteria to actinomycetes appeared high values by application of herbicide and of organic substances. 6. At 66 days after submergence, the ratio of chromogenic actinomycetes to the total number of actinomycetes was lowered in application of herbicide. On the other hand, the percentage of both pretense-positive and cellulase-positive actinomycetes to the total isolates were higher in the treatment with herbicide than An without herbicide, particularly. The ratios of pretense-positive actinomycetes were high in the rice straw application regardless of herbicide application or not, but cellulase-positive actinomycetes was not remarkably difference.

  • PDF

Changes of Physico-chemical Properties and Microflora of Pig Manure due to Composting with Turning Times and Depth (퇴비 부숙과정중 뒤집기 횟수에 따른 퇴적 깊이별 이화학성 및 미생물상 변화)

  • Lee, Sang-Bok;Kim, Jeong-Goo;Lee, Deog-Bae;Lee, Kyeong-Bo;Han, Sang-Soo;Kim, Jai-Duk;Baek, Seung-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.2
    • /
    • pp.127-135
    • /
    • 2002
  • This study was conducted to investigate the physico-chemical and microbiological properties in profile depth during composting process with different turning times when pig manure was composted with ground rice hulls at the rate of same for the promotion of the composting. The moisture contents, C/N rate and pH value decreased according to composting progresses as run into turning times, but increased those inside layer of the pile. $NH_4-N$ and $NO_3-N$ contents were high in the outer layer mostly, as the result the $NH_3$ flux was high in there, but it decreased as composting progresses. The number of aerobic bacteria were $10^7{\sim}10^9\;cfu\;g^{-1}$, increased as the turning times, the number of their showed high in the outer layer. The number of fungi were $10^2{\sim}10^4\;cfu\;g^{-1}$ at the early period of composting, but did't almost survive inside layer as composting progresses. The number of cellulose decomposer and thermophilic bacteria were $10^6{\sim}10^7\;cfu\;g^{-1}$ and $10^6{\sim}10^9\;cfu\;g^{-1}$, respectively, they showed high inside layer of the pile. Therefore, the turning of composting can reduce the change difference of microorganisms in the pile. Turning frequence for the promotion of composting showed approximately 2~3 times.