• Title/Summary/Keyword: Change of tidal water level

Search Result 75, Processing Time 0.024 seconds

Analysis of Operating Characteristics in Tidal Power Generation According to Tide Level

  • Hong, Jeong-Jo;Oh, Young-sun
    • International Journal of Contents
    • /
    • v.18 no.1
    • /
    • pp.76-84
    • /
    • 2022
  • Tidal power generation plays a critical role in reducing greenhouse gas emissions. It uses a tidal force generated by gravitational force between the moon, the earth, and the sun. The change of seawater height generates the tide-generating force, and the magnitude of the change is the tide level. The tide level change has the same period as the tide-generating force twice a day, every 29.5 days, every year, and every 18.6 years. Sihwa Lake Tidal Power Station is Korea's first tidal power plant that began commercial power generation in August 2011 and has been accumulating a large volume of data on electricity production, power generation sales, sluice displacement, and tide levels. The purpose of this paper was to analyze the impact of the inefficiency factors affecting production and the tidal level change on tidal power generation and their characteristics using Sihwa Lake Tidal Power's operational performance data. Throughout this paper we show that tidal power generating operation is accurately predicting the trends of magnitude of tidal force to be periodical for each day. determining the drop to initiate the water turbine generator factoring the constraints on the operation of Sihwa Lake, and reflecting the water discharge through the floodgate and water turbine during the standby mode in the power generation plan to be in the optimal condition until the initiation of the next power generation can maximize power generation.

Variation of Physical Characteristic of Tidal Flat's Environment by Water Level Change (수위변동에 따른 갯벌의 물리적 환경특성의 변화)

  • Park, Jong-Hwa
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.3
    • /
    • pp.1-9
    • /
    • 1999
  • This paper described the results of the characteristics of the near-bottom flow and field analysis of the tidal flats sediment. It was the aim of this paper to grasp current flow of tidal flat's environment and influence factor for environmental change forecast of tidal flats. Field measurement of water velocity, water elevation, bed materials test, and temperature distribution of tidal flat were conducted. Thereafter, current flow, turbidity and temperature distribution of tidal flat sediment have been discussed. The field research results showed that the fluctuating velocity near the seabed before and after its appearance at low tide was strongly affected by the wind wave. The resuspension of the sea-bottom sediment took place with great intensity before and after the appearance of the seabed at low tide. Both the sea water level and the weather condition were a significant influential factors. Such as, temperature and turbidity just on the surface and the shallow layer of seabed sediments were varied largely with time and weather conditions, but that its deeper layers was almost constant. Temperature on the seabed sediments was strongly influenced by irradiance and water depth. The temperature variation of the tidal flat and the variation characteristics of the current flow and turbidity depend greatly on the inhabiting environment of the tidal flat benthic organism.

  • PDF

The Calculation of Seawater Exchange Rate in a Port by Numerical Analysis (수치해석을 이용한 항만의 해수교환율 산정)

  • Kim, Hyung-Jun;Kang, Gyu-Young;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.237-240
    • /
    • 2008
  • Numerical Analysis for exchanging seawater experiment is carried out in Do-Jang fish port. The change of tidal velocity and water level is derived by the two-dimensional nonlinear shallow-water numerical model. To calculate exchange rate of seawater with the change of tidal velocity and water level, a two-dimensional numerical model is employed which governing equations are Fokker-Plank equations. The calculated exchange rates of each time are described in tables and figures.

  • PDF

A study on characteristics of seadike settlement according to the change of tidal level (조위 변화에 따른 제체의 침하 특성에 관한 연구)

  • Yoo, Hyun-Gu;Kim, Jong-Yun;Yoon, Myung-Seok;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1029-1036
    • /
    • 2009
  • Seapage condition by sea water may appears on sea dike due to the gap of tidal, which generated by the sealevel repeatedly moves up and down result of the change of tidal level. In this study, apparatus was developed to apply similitude after setting the critical section. It was found that the soil loss was dramatically increased by increasing hydraulic gradient step by step. Also, to understand the change of seadike which considered the changes of the change of tidal level and inside sealevel, it was executed the experiments which divided the sea level condition of inside by continually changes the sealevel difference which is outside of the high tide and ebb tide.

  • PDF

A Study on Estimation of Design Tidal level Considering Sea Level Change in the Korean Peninsula (한반도의 해수면 상승을 고려한 설계조위 산정에 관한 연구)

  • Choo, Tai Ho;Sim, Su Yong;Yang, Da Un;Park, Sang Jin;Kwak, Kil Sin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.464-473
    • /
    • 2016
  • The air temperatures of the coast and inland are rising due to an increase in carbon dioxide emissions and abnormal climate phenomena caused by global warming, El Nino, La Nina and so on. The sea levels of the Earth are rising by approximately 2.0 mm per year (global average value) due to the thermal expansion of sea water, melting of glaciers and other causes by global warming. On the other hand, when it comes to designing a hydraulic structure or coastal hydraulic structure, the standard of the design water level is decided by analyzing four largeness tide values and a harmonic constant with the observed tidal water level or simulating numerical model. Therefore, the design tidal water level needs to consider an increasing speed of the seawater level, which corresponds to the design frequency. In the present study, the observed tidal water levels targeting 46 tidal stations operated by the Korea Hydrographic and Oceanographic Administration (KHOA) from the beginning of observations to 2015 per hour were collected. The variation of the monthly and yearly and increasing ratio were performed and divided into 7 seas, such as east and west part of the Southern Sea, south part and middle of the East Sea, south part and middle of the Western Sea, and Jeju Sea. The current study could be used to determine the cause of local seawater rises and reflect the design tidal water level as basic data.

The Change of Beach Processes at the Coastal Zone with the Impact of Tide (조석(潮汐)의 영향(影響)이 있는 연안(沿岸)해역(海域)에서의 해안과정(海岸過程)의 변화(變化))

  • Kim, Sang-Ho;Lee, Joong-Woo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.257-262
    • /
    • 2002
  • Numerical model introduced in this study combines wave refraction-diffraction, breaking, bottom friction, lateral mixing, and critical shear stress and three sub-models for simulating waves, currents, and bottom change were briefly discussed. Simulations of beach processes and harbor sedimentation were also described at the coast neighboring Bangpo Harbor, Anmyundo, Chungnam, where the area has suffered from accumulation of drifting sand in a small fishing harbor with a wide tidal range. We also made model test for the case of a narrow tidal range at Nakdong river's estuary area to understand the effect of water level variation on the littoral drift. Simulations are conducted in terms of incident wave direction and tidal level. Characteristics of wave transformation, nearshore current, sediment transport, and bottom change are shown and analyzed. We found from the simulation that the tidal level impact to the sediment transport is very important and we should apply the numerical model with different water level to analyze sediment transport mechanism correctly. Although the model study gave reasonable description of beach processes and harbor sedimentation mechanism, it is necessary to collect lots of field observation data, including waves, tides and bottom materials, etc. for better prediction.

  • PDF

Investigation into the Range of Effect of the Tide Level of Oncheon River Using Delft-3D (Delft-3D를 이용한 온천천의 조위 영향범위 검토)

  • Lee, Sang-Hwa;Lee, Han-Seung;Kim, Jae-Jung;Park, Dong-Hun
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.5
    • /
    • pp.465-472
    • /
    • 2012
  • Recently, as the development of water front and natural type river is gradually increasing, it is mostly the case in that the flow analysis is implemented by only the flood level of the starting point without the tidal effect when the flood water level of the starting point is highly estimated than the high tidal water level in the design of river adjacent to an estuary. This research has analyzed the variation of tidal current for Oncheon river in Busan using Delft-3D program, considering that the tidal effect can cause the change of the flood water level of the starting point although the flood water level is higher than the flood tide level. As a result, considering the tidal effect at downstream boundary condition, water level indicates a periodicity of tide in particular region and the fluctuation range of water level is extended to upstream.

The Change of Coastal Water Area due to the Development of Mokpo Harbor and Construction of Daebul Industrial Complex(I) (목포항 개발 및 대불 산업단지 조성에 따른 연안해역 변화(I)- 해면 정온도를 중심으로 -)

  • 이중우;정명선
    • Journal of the Korean Institute of Navigation
    • /
    • v.15 no.2
    • /
    • pp.87-96
    • /
    • 1991
  • The change of water level at Mokpo Harbour and its adjacent coastal area due to the construction of the Youngsan Estuary Barrage and the Third Land Reclamation Work of estuary barren had been roughly expected. Periodical floods, which occur 2 times per month, are also being observed at the low lying commercial areas near the Mokpo Old Harbor. Although it is said that the highest tidal current component among the tidal current records at the approaching channel to Mokpo Harbor is reduced to 6 kts, because of the esturary barrage, they do not give any precise statement or a deep analysis for the flooding and periodical water level change under certain environmental conditions. Moreover, they never tried the analysis of development plan considering the natural disaster such as typhoon or other extreme conditions. Thus, it is necessary to collect and analyze the data related to floodings, harbor oscillations, currents, and water quality , etc. because of the development considering the extreme condition. Thus, it is necessary to collect and analyze the data related to floodings, harbor oscillations, currents, and water quality, etc. because of the development considering the extreme condition and to evaluate the field observation and measurement, including the numerical model simulation based on the scientific approaches. This study deals the problem of the water level change among the integrated analyses of the coastal area changes. The result can be used for the integrated planning to give a strong foundation and it will contribute to the development of local area.

  • PDF

The Sediment-Water Interface Increment due to the Complex Burrows of Macrofauna in a Tidal Flat

  • Koo, Bon-Joo;Kwon, Kae-Kyoung;Hyun, Jung-Ho
    • Ocean Science Journal
    • /
    • v.40 no.4
    • /
    • pp.221-227
    • /
    • 2005
  • The architecture of macrofaunal burrows and the total area of the sediment-water interface created by biogenic structure were investigated in the Donggeomdo tidal flat on the west coast of Korea. Resin casting methods were applied to recover burrows of four dominant species, Macrophthalmus japonicus, Cleistostoma dilatatum, Perinereis aibuhitensis, and Periserrula leucophryna, and whole burrows within the casting area at three sites in different tidal levels. P. leucophryna excavated the largest burrow in terms of a surface area among them. In the case of whole burrow casting, the space occupied by the biogenic structure was extended into deeper and expanded more greatly at the higher tidal level. In the uppermost flat, the burrow wall surface area within sediment was more extensive than the sediment surface area. Increased oxygen supply through the extended interface could enhance the degradation rates of organic carbon and also change the pathways of degradation. Quantifying the relationship between the extended interface and mineralization rate and pathway requires more extensive study.

Numerical Simulation of Water Level Change at the Coastal Area in the East Sea with the Inverted Barometer Effect (역기압 효과를 반영한 동해 연안 수위 변동 수치 재현)

  • Hyun, Sang Kwon;Kim, Sung Eun;Jin, Jae Yull;Do, Jong Dae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.1
    • /
    • pp.13-26
    • /
    • 2016
  • Sea water level variations are generally influenced by a variety of factors such as tides, meteorological forces, water temperature, salinity, wave, and topography, etc. Among non-tidal conditions, atmospheric pressure is one of the major factors causing water level changes. In the East Sea, due to small tidal range which is opposite to large tidal range of the Yellow Sea, it is difficult to predict water level changes using a numerical model, which consider tidal forcing only. This study focuses on the effects of atmospheric pressure variations on sea level predictions along the eastern coast of Korea. Telemac-2D model is simulated with the Inverted Barometer Effect(IBE), and then its results are analyzed. In comparison between observed data and predictions, the correlation of prediction with IBE and tide is better than that of tide-only case. Therefore, IBE is strongly suggested to be considered for the numerical simulations of sea level changes in the East Sea.