• Title/Summary/Keyword: Change of solvent

Search Result 401, Processing Time 0.024 seconds

High Temperature Application of Iron Removal Chemical Cleaning Solvent in the Secondary Side of Nuclear Steam Generators (증기발생기 2차측 제철화학세정액의 고온적용)

  • Hur, D.H.;Lee, E.H.;Chung, H.S.;Kim, U.C.
    • Nuclear Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.140-148
    • /
    • 1994
  • A qualification test was performed for the iron removal chemical cleaning of the secondary side of nuclear steam generators at the selected temperature, 1$25^{\circ}C$, higher than the standard application temperature, 93$^{\circ}C$. The field cleaning condition for a nuclear unit was tested in a bench scale test loop including a SUS 316 stainless steel autoclave with one gallon capacity as a test vessel. The kinetics of sludge dissolution, corrosion of the secondary side materials and change of solvent chemistry were monitored. Test results indicated that more thorough cleaning was accomplished in less than half of the cleaning time required at 93$^{\circ}C$. And the total corrosions of the secondary side materials were found to be less than the values at 93$^{\circ}C$. While the solvent is recirculated and heated by an external chemical cleaning equipment for the conventional 93$^{\circ}C$ process, the secondary side is heated by the lateral heat of the primary coolant without the recirculation of the cleaning solution, and the solvent is mixed by vigorous boiling induced by periodic ventilation for the high temperature process. The requirement that the reactor coolant pumps should be running during the cleaning operation is the major disadvantage of the high temperature process which also should be considered when chemical cleaning is planned for steam generators under operation.

  • PDF

Identification of College Students' Understanding of the Thermodynamic Aspects Regarding the Dissolution of Solids and Gases (고체와 기체의 용해에 대한 대학생들의 열역학적 이해 조사)

  • Park, Jong-Yoon;Lee, Yun-Hee
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.2
    • /
    • pp.186-196
    • /
    • 2008
  • purpose of this study was to investigate college students' understanding of the thermodynamic aspects of the dissolution of solids and gases. The subjects were 34 juniors from the Seoul area who answered questionnaires composed of six items which asked the directions and reasons for the changes in enthalpy, entropy, and the solubility by temperature for the dissolution of solid sodium chloride and gaseous carbon dioxide into water. The results showed that the students understanding of the enthalpy change of dissolution was poor: many students answered that the dissolution of solids is an exothermic process because the dissolution occurs when the solute-solvent interaction is greater than the solute-solute interaction; the students also thought that the enthalpy should be reduced for spontaneous dissolution because the spontaneity depends on the enthalpy change only. For the entropy change, the students understanding was better and they explained it according to the meaning of disorder. For the temperature dependence of solubility, most students answered correctly regarding the direction, but only 25% of them explained the reason accounting for the enthalpy change. Many students who answered incorrectly on the enthalpy change could not explain the reason why.

Study on the Pyrolysis Kinetics of Deasphalted Oil Using Thermogravimetric Analysis (열중량 분석법을 이용한 Deasphalted Oil의 열분해 특성 분석)

  • Shin, Sang Cheol;Lee, Jung Moo;Lee, Ki Bong;Jeon, Sang Goo;Na, Jeong Geol;Nho, Nam Sun
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.391-397
    • /
    • 2012
  • The depletion of conventional oil reserves and the increasing energy need in developing countries such as China and India result in exceeding oil demand over supply. As a solution of the problem, the efficient utilization of heavy oil has been receiving more and more interest. In order to utilize heavy oil, upgrading processes are required. Among the upgrading processes, thermal decomposition is thought to be relatively simple and economical. In this study, to understand basic characteristics of thermal decomposition of heavy oil, we conducted pyrolysis experiments of deasphalted oil (DAO) produced by a solvent deasphalting process. DAO is a mixture of many components and consists mainly of materials of carbon number 20~40. For the comparison with results of DAO pyrolysis, additional pyrolysis experiments with single materials of carbon number 30 ($C_{30}H_{62}$, $C_{30}H_{58}O_4S$, $C_{30}H_{63}O_3P$) were conducted. Pyrolysis experiments were carried out non-isothermally with variation of heating rate (10, 50, $100^{\circ}C$/min) in a thermogravimetric analyzer. Average pyrolysis activation energy determined by using Arrhenius method, Ingraham and Marrier method, and Coats and Redfern method was 72~99 kJ/mol. In the activation energy calculated by Ozawa-Flynn-Wall method, DAO had wider variation than other single materials.

A Study on the Plasma Treatment Effect of Metal Fibersusing Micromechanical Technique (미세역학적 실험법에 의한 금속섬유의 플라즈마 처리효과에 관한 연구)

  • MiYeon Kwon;Seung Goo Lee
    • Journal of Adhesion and Interface
    • /
    • v.23 no.4
    • /
    • pp.122-129
    • /
    • 2022
  • In this study, the hydrophilicity of the metal fiber is improved by introducing an oxygen-containing functional group to the fiber surface after treatment of the metal fiber using the oxygen plasma treatment time as an experimental variable. For the surface modification of metal fibers, changes in surface properties before and after plasma treatment were observed using SEM and x-ray photoelectron spectroscopy (XPS). In order to observe the effect of the plasma treatment time on the surface of the metal fiber, the change in contact angle of the metal fiber with respect to a polar solvent and a non-polar solvent was measured. After calculating the change in surface free energy using the measured contact angle, the contact angle and the surface free energy for metal fibers before and after oxygen plasma treatment were compared, and the correlation with the adhesion work was also considered. The microdroplet specimens were prepared to investigate the effect of surface changes of these metal fibers on the improvement of shear strength at the interface when combined with other materials and the interfacial shear strength was measured, and the correlation with the adhesion work was also identified. Therefore, the oxygen plasma treatment of the metal fiber results in an increase in the physical surface area on the fiber surface and a change in contact angle and surface energy according to the introduction of the oxygen-containing functional group on the surface. This surface hydrophilization resulted in improving the interfacial shear strength with the polymer resin.

Survival and Histological Changes in Gill of the Rockfish, Sebastes schlegeli Following Exposure to Naphthalene (나프탈렌에 노출된 조피볼락의 생존 및 아가미의 조직학적 변화)

  • Cho, Jae Kwon;Kim, Tae Ik;Son, Maeng Hyun;Kim, Kyong Min;Jin, Young Guk
    • Korean Journal of Ichthyology
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • Rockfish, Sebastes schlegeli (total length; $10.36{\pm}0.49cm$, total weight; $16.28{\pm}1.86g$, N; 290) were exposed to various concentrations of naphthalene for 28 days. Exposure concentrations of naphthalene established control, ethanol (solvent) control, 0.5, 1.0, 1.5 and 2.0 mg Nap $L^{-1}$. After exposure, We observed survival rate, and degree of tissue change (DTC) in gill under optical microscopy. Survival rate of the rockfish was more than 90% in control, ethanol control, 0.5 and 1.0 mg Nap $L^{-1}$, whereas it decreased in 1.5 and 2.0 mg Nap $L^{-1}$ (respectively 80%, 62.2%). In histological observation of gill, hyperplasia of epithelial cells observed in all exposure groups. But no showed increase of DTC which was related to concentration. Whereas, DTC at fusion of gill lamellar, lamellar telangiectasia, stasis, aneurysm and necrosis showed dose dependent increase. Especially, fusion of gill lamellar, lamellar telangiectasia and stasis observed at more 1.0 mg Nap $L^{-1}$, and aneurysm and necrosis at more 1.5 mg Nap $L^{-1}$. These results showed naphthalene caused survival and severe change to the gill of the rockfish which was related to exposure concentration.

A study on the Change of Hand of Chitosan Crosslinked Cotton Fabrics - Effect of Concentration of Epichlorohydrin and Chitosan - (키토산 가교처리된 면직물의 태 변화에 관한 연구 - 에피클로로히드린과 키토산 농도의 영향-)

  • Kim, Min-Ji;Park, Jung-Woo;Lee, Shin-Hee
    • Fashion & Textile Research Journal
    • /
    • v.6 no.5
    • /
    • pp.660-666
    • /
    • 2004
  • This article describes the change of hand value of chitosan crosslinked cotton fabrics. The chitosan crosslinked cotton fabrics were manufactured by mercerizing process using epichlorohydrin(ECH) as crosslinkins agent, 2% aqueous acetic acid as a solvent of chitosan and ECH, and 20% aqueous sodium hydroxide as a mercerizing agent and crosslinking catalyst. Cotton fabrics were dipped in the mixed solution of chitosan and ECH, picked up by mangle, mercerized and crosslinked in NaOH solution, and finally wash and dry. Mechanical and physical properties of the chitosan crosslinked fabric were investigated using Kawabata Evaluation System(KES) and other instruments. Tensile energy and tensile strain were decreased with the increase of the concentration of chitosan. Tensile resilience, compression resilience bending rigidity, bending hysteresis, shear stiffness, shear hysteresis, coefficient of friction, geometrical roughness, compression linearity, compressional energy, and thickness were increased with the increase of the concentration of chitosan. On the other hand, bending rigidity, bending hysteresis, coefficient of friction, geometrical roughness, compressional resilience, and thickness were increased with the increase of the concentration of crosslinking agent(epichlorohydrin).

Fast Determination of Multiple-Reaction Intermediates for Long-Chain Dicarboxylic Acid Biotransformation by Gas Chromatography-Flame Ionization Detector

  • Cho, Yong-Han;Lee, Hye-Jin;Lee, Jung-Eun;Kim, Soo-Jung;Park, Kyungmoon;Lee, Do Yup;Park, Yong-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.704-708
    • /
    • 2015
  • For the analysis of multiple-reaction intermediates for long-chain dicarboxylic acid biotransformation, simple and reproducible methods of extraction and derivatization were developed on the basis of gas chromatography with flame ionization detector (GC-FID) instead of mass spectrometry. In the derivatization step, change of the ratio of pyridine to MSTFA from 1:3 to 9:1 resulted in higher peak intensity (p = 0.021) and reproducibility (0.6%CV) when analyzing 32 g/l ricinoleic acid (RA). Extraction of RA and ω-hydroxyundec-9-enoic acid with water containing 100 mM Tween 80 showed 90.4-99.9% relative extraction efficiency and 2-7%CV compared with those with hydrophobic ethyl acetate. In conclusion, reduction of the pyridine content and change of the extraction solvent to water with Tween 80 provided compatible derivatization and extraction methods to GC-FID-based analysis of longchain carboxylic acids.

Photophysical Properties of 1,3-Dimethylnaphtho[1,2-e]uracil

  • Shim, Sang-Chul;Shin, Eun-Ju;Park, Seung-Ki;Kang, Ho-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.3
    • /
    • pp.196-200
    • /
    • 1986
  • The solvent change and salt do not affect the fluorescence quantum yield of 1,3-dimethylnaphtho[1,2-e]uracil indicating the considerable energy gap between the lowest singlet $({\pi},\;{\pi}^{\ast})\;and\;(n,\;{\pi}^{\ast})$ states in the compound. The results are consistent with the strong quenching of fluorescence by ethyl iodide. Fluorescence quantum yield is nearly independent of temperature, probably due to the relatively inefficient internal conversion. Unusual spectral difference is observed in isopentane and ethanol at 77K. The temperature dependence of emission in isopentane and in ethanol suggests that the increase of charge transfer character by the conformational change in isopentane leads to the structureless and red-shifted fluorescence, while in ethanol the decrease of the charge transfer character by the hydrogen bonding interaction results in the structured and blue-shifted fluorescence along with phosphorescence at the low temperature. Temperature dependence of emission in poly(methylmethacrylate) matrix indicates that $T_1{\to}S_0$ radiationless decay is an important process responsible for the strong temperature dependence of phosphorescence.

Study on the History of Printing Culture - The Center of Jin-Ju Areas - (인쇄문화사에 대한 고찰 - 진주지역을 중심으로)

  • ChuNamJang
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.13 no.2
    • /
    • pp.47-53
    • /
    • 1995
  • Photosensitive resin of azide type is good for resolution and inner solvent, but it is really problem to development of practical use because fanctional groups of polymer has many hydrophilic radicals. By careful attention to this point, this study was investigated synthesis term, photo property and development property of composed photosensitive resin of azida type, it is to this effect. 1) H-NMR spectrum of compared DABCI showed amion redical by $\delta$6.0~6.1ppm to substitude for azide radical by amino radical by $\delta$8.9~9.45ppm, and FT-IR absorption spectra showed the absorption bends at 2100cm. 2)FT-IR absorption spectra of PHS1-DAB, PHS2-DAB, CMM-DAB and CHM-DAB showed azida radical pick to be lost at after irradiation by UV light. 3) According to exposuer change of PHS1-DAB, PHS2-DAB, CMM-DAB and CHM-DAB, absorption maximum value of UV spectrum change was 280nm. 4) to compared relative sensitivity of compared photosensitive resin, PHS2-DAB was the best and to compared insolubility rate of compared photosensitive resin, CMM-DAB was the lower. 5)Solubility if NaOH was the best by 1.0mol/$\ell$ and solubility of developing solution of ethanol to water was it in the ratio of 4 to 1.

  • PDF

The thermal stabilization characteristics of electrolyte membrane in high temperature electrolysis[HTE] (고온 수전해 전해질 막의 열안정화 특성 고찰)

  • Choi, Ho-Sang;Son, Hyo-Seok;Sim, Kyu-Sung;Hwang, Gab-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.2
    • /
    • pp.150-158
    • /
    • 2005
  • Added ratio of 8YSZ powder and organic compounds (solvent, plasticizer, dispersant, binder) properly. It manufactured electrolysis membrane by wet process that make slurry and dry process that do not use organic compounds. In the case of wet process, harmony combination and method of organic compound are an importance element in slurry manufacture. This slurry did calcine at temperature of 140$^{\circ}C$ in Furnace and manufactured electrolyte disk by Dry pressing method. Like this, manufacturing disk sintered at temperature of $1300^{\circ}C,\;1400^{\circ},\;1500^{\circ}C$ in Furnace and completed electrolysis membrane. Confirmed change of crystal structure and decision form through analysis of density, SEM, XRD according to change of sintering temperature, and considered relation with ion conductivity.