• Title/Summary/Keyword: Change Quantification Analysis

Search Result 95, Processing Time 0.037 seconds

Development of a Prediction Technique for Debris Flow Susceptibility in the Seoraksan National Park, Korea (설악산 국립공원 지역 토석류 발생가능성 평가 기법의 개발)

  • Lee, Sung-Jae;Kim, Gil Won;Jeong, Won-Ok;Kang, Won-Seok;Lee, Eun-Jai
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.1
    • /
    • pp.64-71
    • /
    • 2021
  • Recently, climate change has gradually accelerated the occurrence of landslides. Among the various effects caused by landslides,debris flow is recognized as particularly threatening because of its high speed and propagating distance. In this study, the impacts of various factors were analyzed using quantification theory(I) for the prediction of debris flow hazard soil volume in Seoraksan National Park, Korea. According to the range using the stepwise regression analysis, the order of impact factors was as follows: vertical slope (0.9676), cross slope (0.6876), altitude (0.2356), slope gradient (0.1590), and aspect (0.1364). The extent of the normalized score using the five-factor categories was 0 to 2.1864, with the median score being 1.0932. The prediction criteria for debris flow occurrence based on the normalized score were divided into four grades: class I, >1.6399; class II, 1.0932-1.6398; class III, 0.5466-1.0931; and class IV, <0.5465. Predictions of debris flow occurrence appeared to be relatively accurate (86.3%) for classes I and II. Therefore, the prediction criteria for debris flow will be useful for judging the dangerousness of slopes.

Inundation Pattern Analysis of Excavation at Construction Site and Derivation of Diasaster Cause and Effect Using Fish-bone Diagram (굴착공사현장 침수양상 해석 및 어골도에 의한 침수피해 원인 및 결과 도출)

  • Yoo, Dong-Hyun;Song, Chang Geun
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.8
    • /
    • pp.84-91
    • /
    • 2021
  • In the 21st century, a number of storm and flood disasters caused by rapidly changing climate change is increasing, and the number of flood accidents at construction sites is also increasing. However, no specific reduction measures have been presented and thereby safety management to prevent flood accident need to be improved. Therefore, in this study, the inundation pattern by downpour at the excavation site was interpreted and the inundation risk quantification method was used to classify the risk magnitude. Finally, using the fish-bone diagram, we derived the major reasons of inundation accident at construction site systematically. The simulation results showed that the inundation depths of small-scale excavation sites and excavation sites exceeded 3 m due to the fluid flowing through the excavation surface. In addition, depending on the excavation site, a high velocity temporarily observed and decreased due to the storage effect, or high velocity surpassing 10 m/s continued. Since this type of flooding can pose a risk to most or all workers, if proper management measures are insufficient, fatal damage to life and property could occur. Consideration of the roots of these disasters is judged to be helpful in understanding the causes of inundation accidents that result in casualties and presenting accident reduction measures.

Nursing Knowledge/Power and Practice in Pediatric Intensive Care Unit (간호학적 지식/권력과 실무: 아동중환자실을 중심으로)

  • Lee Eun Joo;Hong Kyung Ja
    • Child Health Nursing Research
    • /
    • v.7 no.1
    • /
    • pp.85-95
    • /
    • 2001
  • The purpose of this study was to reveal what influences the divergent methodological researches have brought the nursing practice in during the past 3 decades. The nursing record sheets ie, the nursing discourses were analyzed to know the knowledges that were recorded, accepted and communicated in nursing practice at pediatric intensive care units, and unclosed the philosophical and methodological position of that knowledges. The texts were 13 sheets, 3 kinds of nursing record(7 24hours flow charts, 4 nursing information record sheets and 2 transfer record sheets) used at 4 hospitals. The unit of analysis was 'word'. First, all words of the sheets were listed up, clustered into categories based on their contents. And then, the larger conceptual themes were drawn to elucidate the effect of the knowledge/power and the philosophical and methodological position of that knowledges. To enhanced the validity of the analysis, the data were analyzed by two researchers. The 'words' were classified into 3 categories; 'general information', 'assessment' and 'inter-vention'. The conceptual themes of the texts were 'the gaze for quantification and objectification' and 'technical/assimilated caring'. This themes reflected the logic positivistic and biomedical view that had dominated at clinical practice. Nursing has endeavored to resist the logic-positivistic knowledge/power and to established the nursing knowledge/power based on multiple philosophies and methodologies, especially phenomenological-interpretative. But the results of this study revealed that such efforts in nursing theory and research couldn't influenced the knowledge of practice. Logic positivism was yet so strong and the biomedical model yet dominated in the clinical practice. It identified that the borrowed theory and the knowledge from the received view gave nursing the power. But they were modalities that reinforced the dominant, medical power. Nursing has investigate the other positions (feminism, Habermas' critical social theory and Foucault's discourse theory). This positions suggest different assumptions but share the common concepts; equality, emancipation and freedom. The important point is how make these concepts the practical for nursing knowledge/power in practice. We must recognize that the praxis at clinical setting take place at the field unlike theoretical praxis. The change of clinical practice is the social, economic and political change.

  • PDF

An External Costs Assessment of the Impacts on Human Health from Nuclear Power Plants in Korea (국내원전운전(國內原電運轉)에 따른 보건영향(保健影響)의 외부비용평가(外部費用評價))

  • Kim, Kyoung-Pyo;Kang, Hee-Jung
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.2
    • /
    • pp.67-76
    • /
    • 2008
  • As the first comprehensive attempt at a national implementation, this study aims at assessing the external costs of major electricity generation technologies in Korea, particularly an evaluation of the impacts on human health resulting from exposures to atmospheric radiological emissions from nuclear power plants, and a monetary quantification of their damages. The methodology used for the assessment of the externalities of the selected fuel cycles has been developed by the International Atomic Energy Agency (IAEA), namely the SimPacts Model Package. The model is internationally recognized as a tool which can be applied to a wide range of fuels, different technologies and locations, for an externalities study. In this study, the relevant emissions are quantified first and then their impacts on human health are evaluated and compared. The study focused on all the nuclear power plants for the last 6 years ($2001{\sim}2006$) in Korea. With respect to nuclear power, the impact analysis only focuses on a power generation, however the front- and back-end nuclear fuel cycles are not included, namely uranium mining, conversion, enrichment, reprocessing, conditioning, etc., because these facilities are not present in Korea. The analysis results show that nuclear power in general, generates low external costs. The highest damage costs from the nuclear power plants among the 4 sites in Korea were estimated to be 3.9 mills/MWh, which is about 1/20th of the result for a similar case study conducted in the U.K., implemented through the ExternE project. This difference is largely due to the number of radionuclides included in the study and the amount of released radioactive emissions based on up-to-date information in Korea. In this study, the sensitivities of the major factors for nuclear power plants were also calculated. The analysis indicates that there was around a ${\pm}3%$ damage costs variation to a ${\pm}15%$ change of the reference population density and a ${\pm}1%$ damage cost variation to a $1{\sim}30$ meters change of the effective release height, respectively. These sensitive calculations show that there is only a minor difference when the reference costs are compared.

Analysis of the Pre-service Chemistry Teachers' Cognition of the Nature of Model in the Design and Development Process of Models Using Technology: Focusing on Boyle's Law (테크놀로지를 활용한 모델의 설계와 개발 과정에서 나타난 예비화학교사의 모델의 본성에 대한 인식 분석: 보일 법칙을 중심으로)

  • Na-Jin Jeong;Seoung-Hey Paik
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.5
    • /
    • pp.378-392
    • /
    • 2023
  • The purpose of this study is to analyze the pre-service chemistry teachers' cognition of the nature of model in process of designing and developing models using technology. For this purpose, 19 pre-service chemistry teachers' in the 3rd grade of a education college located in the central region observe experimental phenomena related to Boyle's law presented in the 7th grade science textbook and researchers required the design and development of a model related to the observed experimental results using technology. Based on previous studies, the nature of model were classified into two aspect: 'Representational aspect' and 'Explanatory aspect'. The 'Representational aspect' was classified into 'Representation', 'Abstraction', and 'Simplification', and the 'Explanatory aspect' was classified into 'Analysis', 'Interpretation', 'Reasoning', 'Explanation', and 'Quantification'. The pre-service chemistry teachers' cognition were analyzed by the classification. As a result of the study, the 'Representation' of the 'expressive aspect' was uniformized in the form of space that changes in volume, and the pressure was expressed as the Brightness inside the cylinder or frequency of color change of particles for 'Abstraction'. In the case of 'Simplification', the particle collision was expressed as a perfectly elastic collision, but there was a group that could not simply indicate the type of particle. In the 'Explanatory aspect', in the case of 'Analysis', volume was classified as a manipulated variable, and in the case of 'Interpretation', most groups analyzed the change in pressure through the collision of gas particles. However, the cognition involved in 'Reasoning' was not observed much. In the case of 'Explanation', there were groups that did not succeed in explanation because the area where the particles collided was not set or incorrectly set, and in the case of 'Quantification', there was a group that formulated the number of collisions per unit time, and on the contrary, there was a group that could not quantify the number of collisions because they could not be expressed in numbers.

Estimation of Fingerprint Image Quality in Accordance with Photographing Conditions (촬영 조건에 따른 지문 사진의 품질에 관한 연구)

  • Yu, Je-Seol;Jeon, So-Young;Kim, Kyu-Yeon;Kim, Ji-Yeon;Kim, Chae-Won;Jang, Jake
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.6
    • /
    • pp.287-295
    • /
    • 2017
  • This study is aimed at observing effects of fingerprint image quality on various photographing conditions in the aspect of resolution. Discrimination between two friction ridges plays an important role in the value of fingerprint image, and it can be confirmed with quantification of pixels of boundary region which is existing between two friction ridges. In this study, several factors were estimated with same fingerprint image using Adobe photoshop CS 6 for analysis: changes of image quality by ISO, movement when photographing, and photographers' experience and skill. Consequently, there was no significant change of image quality by ISO. Furthermore, there was no significant difference in the hand-held images between crime scene investigators and laymen, yet there was significant difference between hand-held images and images using tripod in the aspect of resolution. This study shows that using tripod is very important in forensic fingerprint photography through empirical methods.

Alteration of Phospholipids during the Mitophagic Process in Lung Cancer CellsS

  • Lee, Jae Won;Cho, Kyung Mi;Jung, Jae Hun;Tran, Quangdon;Jung, Woong;Park, Jongsun;Kim, Kwang Pyo
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.10
    • /
    • pp.1790-1799
    • /
    • 2016
  • Matrix assisted laser desorption ionization (MALDI)-time of flight/mass spectrometry (TOF/MS) was applied to investigate alterations in phospholipids in mitophagic cancer cells. Several phospholipids, including phosphatidylcholines (PCs), sphingomyelins (SMs), and phosphatidylinositols (PIs), were successfully analyzed in control and mitophagy-induced H460 cells in the positive and negative ion modes. Principal component analysis was applied to differentiate the two groups. The upregulated and downregulated phospholipid species in the mitophagic cells were also represented in a heatmap. In the volcano plot (fold change > 1.3 and p value < 0.01), individual species of seven PCs, two SMs, and three PIs were selected as differentially regulated phospholipids. In particular, almost all the molecular species of PC, SM, and PI were downregulated in the mitophagic cells. Quantification of these lipids indicated that mitophagy induces altered metabolism of phospholipids. Therefore, phospholipid alterations during the mitophagic process of lung cancer cells were well characterized by MALDI-TOF/MS.

Structural health monitoring of Canton Tower using Bayesian framework

  • Kuok, Sin-Chi;Yuen, Ka-Veng
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.375-391
    • /
    • 2012
  • This paper reports the structural health monitoring benchmark study results for the Canton Tower using Bayesian methods. In this study, output-only modal identification and finite element model updating are considered using a given set of structural acceleration measurements and the corresponding ambient conditions of 24 hours. In the first stage, the Bayesian spectral density approach is used for output-only modal identification with the acceleration time histories as the excitation to the tower is unknown. The modal parameters and the associated uncertainty can be estimated through Bayesian inference. Uncertainty quantification is important for determination of statistically significant change of the modal parameters and for weighting assignment in the subsequent stage of model updating. In the second stage, a Bayesian model updating approach is utilized to update the finite element model of the tower. The uncertain stiffness parameters can be obtained by minimizing an objective function that is a weighted sum of the square of the differences (residuals) between the identified modal parameters and the corresponding values of the model. The weightings distinguish the contribution of different residuals with different uncertain levels. They are obtained using the Bayesian spectral density approach in the first stage. Again, uncertainty of the stiffness parameters can be quantified with Bayesian inference. Finally, this Bayesian framework is applied to the 24-hour field measurements to investigate the variation of the modal and stiffness parameters under changing ambient conditions. Results show that the Bayesian framework successfully achieves the goal of the first task of this benchmark study.

Geomechanical and thermal reservoir simulation during steam flooding

  • Taghizadeh, Roohollah;Goshtasbi, Kamran;Manshad, Abbas Khaksar;Ahangari, Kaveh
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.505-513
    • /
    • 2018
  • Steam flooding is widely used in heavy oil reservoir with coupling effects among the formation temperature change, fluid flow and solid deformation. The effective stress, porosity and permeability in this process can be affected by the multi-physical coupling of thermal, hydraulic and mechanical processes (THM), resulting in a complex interaction of geomechanical effects and multiphase flow in the porous media. Quantification of the state of deformation and stress in the reservoir is therefore essential for the correct prediction of reservoir efficiency and productivity. This paper presents a coupled fluid flow, thermal and geomechanical model employing a program (MATLAB interface code), which was developed to couple conventional reservoir (ECLIPSE) and geomechanical (ABAQUS) simulators for coupled THM processes in multiphase reservoir modeling. In each simulation cycle, time dependent reservoir pressure and temperature fields obtained from three dimensional compositional reservoir models were transferred into finite element reservoir geomechanical models in ABAQUS as multi-phase flow in deforming reservoirs cannot be performed within ABAQUS and new porosity and permeability are obtained using volumetric strains for the next analysis step. Finally, the proposed approach is illustrated on a complex coupled problem related to steam flooding in an oil reservoir. The reservoir coupled study showed that permeability and porosity increase during the injection scenario and increasing rate around injection wells exceed those of other similar comparable cases. Also, during injection, the uplift occurred very fast just above the injection wells resulting in plastic deformation.

Development of a quantification method for modelling the energy budget of water distribution system (상수관망 에너지 모의를 위한 정량화 분석기법 개발)

  • Choi, Doo Yong;Kim, Sanghyun;Kim, Kyoung-Pilc
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1223-1234
    • /
    • 2022
  • Efforts for reducing greenhouse gas emission coping with climate change have also been performed in the field of water and wastewater works. In particular, the technical development for reducing energy has been applied in operating water distribution system. The reduction of energy in water distribution system can be achieved by reducing structural loss induced by topographic variation and operational loss induced by leakage and friction. However, both analytical and numerical approaches for analyzing energy budget of water distribution system has been challengeable because energy components are affected by the complex interaction of affecting factors. This research drew mathematical equations for 5 types of state (hypothetical, ideal, leak-included ideal, leak-excluded real, and real), which depend on the assumptions of topographic variation, leakage, and friction. Furthermore, the derived equations are schematically illustrated and applied into simple water network. The suggested method makes water utilities quantify, classify, and evaluate the energy of water distribution system.