• Title/Summary/Keyword: Change Propagation

Search Result 531, Processing Time 0.023 seconds

Link analysis considering the satellite mobility in the LEO mobile communication networks (저궤도 이동위성통신망에서 위성의 이동성을 고려한 링크해석)

  • 황성현;김병균;최형진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.10
    • /
    • pp.2256-2271
    • /
    • 1997
  • In this paper, we analyze the multipath fading and the inter-satellite interference considering the satellite mobility in the LEO mobile satellite communication networks and evaluate the link perfodrmance for various wave propagation environments and reliabilities of communiation system. Multipath fading is estimated by analyzing the variation of fading margin for the satellite motion in rural, urban and suburban environments. The inter-satellite interferences are classified into 8 bypes with respect to interference path. The interferences evaluated in the paper are as follows:intra-LEO satellite interference, inter-LEO satellite interference, and GEO satellite to LEO satellite interference. As a conclusion, this apaper analyzes the change of elevation anagle and propagation distance with respect to time in the LEO satellite netwoek and prosents the variation of link margin continuously.

  • PDF

Long-Term Monitoring and Analysis of a Curved Concrete Box-Girder Bridge

  • Lee, Sung-Chil;Feng, Maria Q.;Hong, Seok-Hee;Chung, Young-Soo
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.2
    • /
    • pp.91-98
    • /
    • 2008
  • Curved bridges are important components of a highway transportation network for connecting local roads and highways, but very few data have been collected in terms of their field performance. This paper presents two-years monitoring and system identification results of a curved concrete box-girder bridge, the West St. On-Ramp, under ambient traffic excitations. The authors permanently installed accelerometers on the bridge from the beginning of the bridge life. From the ambient vibration data sets collected over the two years, the element stiffness correction factors for the columns, the girder, and boundary springs were identified using the back-propagation neural network. The results showed that the element stiffness values were nearly 10% different from the initial design values. It was also observed that the traffic conditions heavily influence the dynamic characteristics of this curved bridge. Furthermore, a probability distribution model of the element stiffness was established for long-term monitoring and analysis of the bridge stiffness change.

Domestic Radio Waves Propagate Management and Control Systems Investigate the System Status (주요선진국 전파관리제도와 국내 전파관리 제도에 대한 조사)

  • Kim, Sung-Hong;Seok, Gyeong-Hyu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • There propagate use management paradigm in developed countries is changing as Command & Control ${\Rightarrow}$ Market Based ${\Rightarrow}$ Open Access ${\Rightarrow}$ Manage By Technology & Technical Analysis, that the policy response to environmental changes, such as a variety of new technologies. The emergence of service, the proliferation of propagation users It is to activate the market. However, the basic principles of radio management such that the change of paradigm be used to spread in a range that does not affect the interference, such as the horn is to be observed. Around the world in order to prevent the propagation and utilization Horn interference enacted regulations for managing the radio station, and also discipline.

A Study on the Injection Characteristics of Fuel Supply System of Diesel Engine (디젤엔진 연료계통의 분사특성에 관한 연구)

  • 송치성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.49-62
    • /
    • 1993
  • It has been a principle research topic on the diesel engine development to increase the efficiency and the performance of engine to satisfy the user's needs for high reliability and durability. However, recently with the worldwide concerns at the global climate change and environmental protection, the main target in the diesel engine research has been changed to solve the exhaust emission problem in order to satisfy the strict emission regulations. To reduce the pollutant for the diesel engine, the researchs on the combustion chamber is the most important and has to be performed first of all. The diesel fuel injection system plays major role to air-fuel mixing process and influences engine output, themal efficiency, reliability, noise, and emissions. The experimental studies were conducted by varying the various parametric conditions and the results were campared with the computation and calculated results by using the fuel injection simulation program developed during previous research. From the experiments, the matching technique of a fuel injection pump and nozzle was conducted to understand under the various parametric conditions. Also, the relations between needle lift and wave propagation characteristics in high pressure pipe were examined. The basic design data from the experimentations and computation works would be applied to actual design works of diesel fuel injection system.

  • PDF

Experimentally Investigation on Combustion Phenomena in Micro Combustor for the Application of Power MEMS (초소형 연소기에서의 연소 현상 실험적 연구)

  • 나한비;김세훈;최원영;권세진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.270-273
    • /
    • 2003
  • The characteristic of constant volume micro combustor was investigated experimentally. The shape of micro combustor was cylindrical and has row aspect ratio or has relatively large diameter compared with chamber height. Diameter and chamber height was varied to investigate the geometric effect of combustor on the flame propagation. Diameter of 15 mm and 7.5 mm was designed while chamber height was designed to be 1mm, 2mm, and 3mm. The effect of initial pressure was also investigated parametrically from 1bar to 3bar. The gas used in this study was stoichiometric mixture of methane and air. The maximum pressure achieved in down scaled combustors was lower than that of conventional combustor because heat loss to wall was dominant as expected. The maximum pressure responded favorably with the change of height of combustor and the initial pressure, the maximum pressure was also increased. The flame propagation was possible when the specific condition was satisfied. Although the quenching distance of stoichiometric mixture of CH4 and Air is 2.5 mm, the flame could propagate even under quenching distance as the initial pressure increased.

  • PDF

Correlation Analysis of Transmission and Reflection Angle of Propagation Characteristics from 13-28 GHz

  • Kim, Yong Won;Jeong, Won Ho;Ju, Sang Lim;Kim, Kyung Seok
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.2
    • /
    • pp.69-73
    • /
    • 2016
  • In order to derive reliable propagation models for future millimeter-wave frequency indoor pico-cellular communications systems, accurate reflectivity data of building materials is necessary. The broad variety of building materials and construction codes makes accurate attenuation prediction very difficult without the support of specific construction data or measurements. This paper derives a transmission and reflection coefficient based on 13 GHz to 28 GHz measurement data. Transmission and reflection is measured by applying change in the reception angle of each building material, such as plasterboard. The transmission and reflection coefficient derived shows a correlation between frequency dependence and angle. As a result, as the reception angle is reduced, the reflected angle from the transmitter that could be received increases, showing that there is a correlation. In addition, the fundamental investigations carried out lay the foundation for radio channel-related research, which is essential for the development of future millimeter-wave communications systems.

Dynamic elastic local buckling of piles under impact loads

  • Yang, J.;Ye, J.Q.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.5
    • /
    • pp.543-556
    • /
    • 2002
  • A dynamic elastic local buckling analysis is presented for a pile subjected to an axial impact load. The pile is assumed to be geometrically perfect. The interactions between the pile and the surrounding soil are taken into account. The interactions include the normal pressure and skin friction on the surface of the pile due to the resistance of the soil. The analysis also includes the influence of the propagation of stress waves through the length of the pile to the distance at which buckling is initiated and the mass of the pile. A perturbation technique is used to determine the critical buckling length and the associated critical time. As a special case, the explicit expression for the buckling length of a pile is obtained without considering soil resistance and compared with the one obtained for a column by means of an alternative method. Numerical results obtained show good agreement with the experimental results. The effects of the normal pressure and the skin friction due to the surrounding soil, self-weight, stiffness and geometric dimension of the cross section on the critical buckling length are discussed. The sudden change of buckling modes is further considered to show the 'snap-through' phenomenon occurring as a result of stress wave propagation.

Three dimensional dynamic analysis of underground tunnels by coupling of boundary and finite elements (유한요소-경계요소 조합에 의한 터널의 3차원 동적해석)

  • 이찬우;김문겸;황학주
    • Computational Structural Engineering
    • /
    • v.8 no.3
    • /
    • pp.91-102
    • /
    • 1995
  • For the wave propagation problems, the influence of time-dependent dynamic behavior must be accounted in the analysis. In this study, the dynamic analysis method which combines finite elements and boundary elements is developed for the wave propagation problem modelling the infinity of medium through 3-D boundary elements and underground structure through degenerated finite shell elements. Performing dynamic analysis of underground tunnels by the proposed coupling method of boundary and finite elements, it is found that the change of the stiffness of structures has a good effect on the response. It is also found that the consideration of the repeating effect due to moving traffic loads which is difficult with existing 2-D dynamic analysis can be possible with the 3-D analysis in time domain.

  • PDF

Combustion Characteristics and Criterion of Quenching Condition in Micro Combustor Parameterized by Initial Pressure and Fuel in the Combustor (초기 압력과 연료특성에 따른 마이크로 연소기 내에서의 연소 특성 및 소염 조건 변화)

  • Na, Han-Bee;Lee, Dae-Hoon;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.55-62
    • /
    • 2005
  • Combustion Characteristics and quenching criteria of micro combustor in various condition was exploited experimentally. Two different gases were used, and various geometric matrixes were considered to figure out quenching characteristic of micro combustor. The micro combustor studied in this study was constant volume, and has cylindrical shape. Geometric parameter of combustor was defined to be combustor height and diameter. The effect of height was exploited parametrically as 1 mm, 2mm and 3mm and the effect of diameter was parameterized to be 7.5mm and 15mm. Three different combustibles. (1) Stoichiometric mixture of methane and are, (2) Stoichiometric mixture of hydrogen and air and (3) Mixture of hydrogen and air with fuel stoichiometry of two were used. Pressure transition during combustion process was recovered. The ratio of maximum pressure to initial pressure responded favorably with the change of height of combustor and the initial pressure, the maximum pressure was also increased. The flame propagation was observed only when a specific condition was satisfied. From the experiment the condition that guarantees stable propagation of flame was tabulated. The tabulated results includes criteria of quenching according to combustor height, combustor diameter, species of fuel and initial pressure.

Change in the Binding Cooperativity of Ethidium with Calf Thymus DNA, Induced by Spermine Binding (Spermine에 依한 Ethidium의 Calf Thymus DNA와의 結合 Cooperativity 變化)

  • Ko, Thong-Sung;Huh, Joon;Lee, Chan-Yong
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.3
    • /
    • pp.185-193
    • /
    • 1984
  • At the spermine concentration to cover the number of the binding site of spermine 0.016 per nucleotide, the Hill coefficient of the ethidium binding to the calf thymus DNA was 1.7, while the value was 0.38 in the absence of the spermine. On the basis of the data, together with other present data on the viscometric titration of the DNA with spermine and anomalous absorbance-temperature profile at 260nm and viscosity-temperature profile, it can be speculated that allosteric propagation of the conformational transition induced by the binding of the spermine may be involved in the monomolecular collapse of the DNA to a condensed structure.

  • PDF