• Title/Summary/Keyword: Change Detection

Search Result 2,417, Processing Time 0.032 seconds

Video smoke detection with block DNCNN and visual change image

  • Liu, Tong;Cheng, Jianghua;Yuan, Zhimin;Hua, Honghu;Zhao, Kangcheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3712-3729
    • /
    • 2020
  • Smoke detection is helpful for early fire detection. With its large coverage area and low cost, vision-based smoke detection technology is the main research direction of outdoor smoke detection. We propose a two-stage smoke detection method combined with block Deep Normalization and Convolutional Neural Network (DNCNN) and visual change image. In the first stage, each suspected smoke region is detected from each frame of the images by using block DNCNN. According to the physical characteristics of smoke diffusion, a concept of visual change image is put forward in this paper, which is constructed by the video motion change state of the suspected smoke regions, and can describe the physical diffusion characteristics of smoke in the time and space domains. In the second stage, the Support Vector Machine (SVM) classifier is used to classify the Histogram of Oriented Gradients (HOG) features of visual change images of the suspected smoke regions, in this way to reduce the false alarm caused by the smoke-like objects such as cloud and fog. Simulation experiments are carried out on two public datasets of smoke. Results show that the accuracy and recall rate of smoke detection are high, and the false alarm rate is much lower than that of other comparison methods.

Building Change Detection Using Deep Learning for Remote Sensing Images

  • Wang, Chang;Han, Shijing;Zhang, Wen;Miao, Shufeng
    • Journal of Information Processing Systems
    • /
    • v.18 no.4
    • /
    • pp.587-598
    • /
    • 2022
  • To increase building change recognition accuracy, we present a deep learning-based building change detection using remote sensing images. In the proposed approach, by merging pixel-level and object-level information of multitemporal remote sensing images, we create the difference image (DI), and the frequency-domain significance technique is used to generate the DI saliency map. The fuzzy C-means clustering technique pre-classifies the coarse change detection map by defining the DI saliency map threshold. We then extract the neighborhood features of the unchanged pixels and the changed (buildings) from pixel-level and object-level feature images, which are then used as valid deep neural network (DNN) training samples. The trained DNNs are then utilized to identify changes in DI. The suggested strategy was evaluated and compared to current detection methods using two datasets. The results suggest that our proposed technique can detect more building change information and improve change detection accuracy.

Seasonal Effects Removal of Unsupervised Change Detection based Multitemporal Imagery (다시기 원격탐사자료 기반 무감독 변화탐지의 계절적 영향 제거)

  • Park, Hong Lyun;Choi, Jae Wan;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.2
    • /
    • pp.51-58
    • /
    • 2018
  • Recently, various satellite sensors have been developed and it is becoming more convenient to acquire multitemporal satellite images. Therefore, various researches are being actively carried out in the field of utilizing change detection techniques such as disaster and land monitoring using multitemporal satellite images. In particular, researches related to the development of unsupervised change detection techniques capable of extracting rapidly change regions have been conducted. However, there is a disadvantage that false detection occurs due to a spectral difference such as a seasonal change. In order to overcome the disadvantages, this study aimed to reduce the false alarm detection due to seasonal effects using the direction vector generated by applying the $S^2CVA$ (Sequential Spectral Change Vector Analysis) technique, which is one of the unsupervised change detection methods. $S^2CVA$ technique was applied to RapidEye images of the same and different seasons. We analyzed whether the change direction vector of $S^2CVA$ can remove false positives due to seasonal effects. For the quantitative evaluation, the ROC (Receiver Operating Characteristic) curve and the AUC (Area Under Curve) value were calculated for the change detection results and it was confirmed that the change detection performance was improved compared with the change detection method using only the change magnitude vector.

A Fast Detection of Change Regions using Test Statistics (검정 통계량을 이용한 고속 변화 영역 검출)

  • Chung, Yoon-Su;Kim, Jin-Seok;Kim, Jae-Han;Lee, Kil-Heum
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.3
    • /
    • pp.241-247
    • /
    • 2000
  • In this paper, a fast change detection is proposed for sequence image. The proposed method enhances the quality of the change detection mask and the speed of the change detection by combining block based method and pixel based method. Firstly, change regions are detected for 16 ${\times}$ 16 blocks in image. And 16 ${\times}$ 16 contour block of change detection mask is divided into 4 subblocks. Finally, for divided 8 ${\times}$ 8 blocks, contour blocks are extracted and then, the pixel-based change regions are detected for them. As this makes use of the block based method, this not only enhances the speed of the change detection, but also reduces effects of noise in change detection mask. Experimental results show not only the improvement of the separated change/non-change region, but also the improvement of the speed.

  • PDF

Web Change Detection System Using the Semantic Web (시맨틱 웹을 이용한 웹 변경 탐지 시스템)

  • Cho Boo-Hyun;Min Young-Kun;Lee Bog-Ju
    • The KIPS Transactions:PartB
    • /
    • v.13B no.1 s.104
    • /
    • pp.21-26
    • /
    • 2006
  • The semantic web is an emerging paradigm in the information retrieval and Web-based system. This paper deals with a Web change detection system which employs the semantic web and ontology. While existing Web change detection systems detect the syntactic change, the proposed system focuses on the detection of the semantic change. The system detects the change only when the web has semantic change. To achieve this, the system employs the domain-specific ontology (e.g., computer science professional person information in the paper). The Web pages regarding before and after change are converted according to the ontology. Then the comparison is performed. The experimental result shows the semantic-based change detection is more useful than the syntax-based change detection.

Development and Evaluation of a Texture-Based Urban Change Detection Method Using Very High Resolution SAR Imagery (고해상도 SAR 영상을 활용한 텍스처 기반의 도심지 변화탐지 기법 개발 및 평가)

  • Kang, Ah-Reum;Byun, Young-Gi;Chae, Tae-Byeong
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.3
    • /
    • pp.255-265
    • /
    • 2015
  • Very high resolution (VHR) satellite imagery provide valuable information on urban change monitoring due to multi-temporal observation over large areas. Recently, there has been increased interest in the urban change detection technique using VHR Synthetic Aperture Radar (SAR) imaging system, because it can take images regardless of solar illumination and weather condition. In this paper, we proposed a texture-based urban change detection method using the VHR SAR texture features generated from Gray-Level Co-Occurrence Matrix (GLCM). In order to evaluate the efficiency of the proposed method, the result was compared, visually and quantitatively, with the result of Non-Coherent Change Detection (NCCD) which is widely used for the change detection of VHR SAR image. The experimental results showed the greater detection accuracy and the visually satisfactory result compared with the NCCD method. In conclusion, the proposed method has shown a great potential for the extraction of urban change information from VHR SAR imagery.

A study on the application of high resolution K5 SAR images (다목적 위성 5호 고해상도 SAR 영상의 활용 방안 연구)

  • Yu, Sujin;Song, Kyoungmin;Lee, Wookyung
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.1
    • /
    • pp.6-12
    • /
    • 2017
  • Recently, the demand for SAR imaging is growing to monitor natural disasters or military sites to foresee topographic changes, where optical sensing is not easily available. High-resolution SAR images are useful in exploring topography and monitoring artificial land objects in all weather conditions. In this paper,high resolution SAR images acquired from KOMPSAT-5 are exploited for the applications of change detection and classification. In order to detect change areas, amplitude change detection (ACD) and coherence change detection (CCD) algorithms are employed and their performances are compared in practical applications. For enhanced performance, the potential of small scaled change detection is explored by combining multi-temporary SAR images. The k-means and SVM methods are applied for land classifications and their performances are compared by applying to the real spaceborne SAR images.

Scene Change Detection Algorithm on Compressed Video

  • Choi Kum-Su;Moon Young-Deuk
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.442-446
    • /
    • 2004
  • This paper propose scene change detection algorithm using coefficient of forward prediction macro-block, backward prediction macro-block, and intra-coded macro-block on getting motion estimation. Proposed method detect scene change with correlation according picture type forward two picture or forward and backward two picture on video sequences. Proposed algorithm is high accuracy and can detect all scene change on video, and detect to occur scene change on P, B, I-picture.

  • PDF

Change Detection Using the IKONOS Satellite Images (IKONOS 위성영상을 이용한 변화 탐지)

  • Kang, Gil-Seon;Shin, Sang-Cheul;Cho, Kyu-Jon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.2 s.25
    • /
    • pp.61-66
    • /
    • 2003
  • The change detection using the satellite imagery and airphotos has been carried out in the application of terrain mapping, environment, forestry, facility detection, etc. The low-spatial resolution data such as Landsat, NOAA satellite images is generally used for automatic change detection, while on the other hand the high-spatial resolution data is used for change detection by image interpretation. The research to integrate automatic method with manual change detection through the high-spatial resolution satellite image is performed. but the problem such as shadow, building 'lean' due to perspective geometry and precision geocorrection was found. In this paper we performed change detection using the IKONOS satellite images, and present the concerning problem.

  • PDF

GIS DETECTION AND ANALYSIS TECHNIQUE FOR ENVIRONMENTAL CHANGE

  • Suh, Yong-Cheol;Choi, Chul-Uong;Kim, Ji-Yong;Kim, Tae-Woo
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.163-168
    • /
    • 2008
  • KOMPSAT-3 is expected to provide data with 80-cm spatial resolution, which can be used to detect environmental change and create thematic maps such as land-use and land-cover maps. However, to analyze environmental change, change-detection technologies that use multi-resolution and high-resolution satellite images simultaneously must be developed and linked to each other. This paper describes a GIS-based strategy and methodology for revealing global and local environmental change. In the pre-processing step, we performed geometric correction using satellite, auxiliary, and training data and created a new classification system. We also describe the available technology for connecting global and local change-detection analysis.

  • PDF