• 제목/요약/키워드: Changchun

검색결과 195건 처리시간 0.026초

THE TRANSFER OF CHLORIDE ION ACROSS ANION EXCHANGE MEMBRANE

  • Yu, Zemu;Wang, Hanming;Wang, Erkang
    • 분석과학
    • /
    • 제8권4호
    • /
    • pp.597-601
    • /
    • 1995
  • The transfer of chloride ion across an anion exchange membrane (AEM) was investigated by cyclic voltammetry (CV) and electrochemical impedance spectra. In CV experiment, when the size of the hole in membrane was much smaller than the distance between membrane holes, the Cl anion transfer showed steady state voltammetric behavior. Each hole in membrane can be regarded as a microelectrode and the membrane was equivalent to a microelectrode array in this condition. When the hole in membrane was large or the distance between membrane holes was small, the CV curve of the Cl anion transfer across membrane showed peak shape, which attributed to linear diffusion. In ac impedance measurement, the impedance spectrum of the membrane system was composed of two semicircles at low de bias, corresponding to the bulk characteristics of the membrane and the kinetic process of ion transfer, respectively. The bulk membrane resistance increases with increasing dc bias and only one semicircle was observed at higher dc bias. The parameters related to kinetic and membrane properties were discussed.

  • PDF

Off-axis Two-mirror System with Wide Field of View Based on Diffractive Mirror

  • Meng, Qingyu;Dong, Jihong;Wang, Dong;Liang, Wenjing
    • Journal of the Optical Society of Korea
    • /
    • 제19권6호
    • /
    • pp.604-613
    • /
    • 2015
  • An unobstructed off-axis two-mirror system is presented in this paper. First a suitable initial configuration is established based on third-order aberration theory. In order to achieve a wide field of view (FOV) with high image quality , the diffractive mirror is adopted in the two-mirror system to increase the optimization freedom and the aberration relationship between diffractive phase coefficients and Zernike coefficients is derived. Furthermore, a complete comparison design example with a focal length of 1200 mm, F-number of 12, and FOV of 40° × 2° is given to verify the aberration correction ability of the diffractive mirror. The system average wavefront error is 0.007 λ (λ=0.6328 μm) developed from 0.061 λ when the system didn’t adopt the diffractive mirror. In this system the phase modulation function of the diffractive mirror is established as an even function of x, so we could obtain a symmetrical imaging quality about the tangential plane, and the symmetric aberration performance also brings considerable convenience to alignment and testing for the system.

Measurement of the Modulation Transfer Function of Infrared Imaging System by Modified Slant Edge Method

  • Li, Hang;Yan, Changxiang;Shao, Jianbing
    • Journal of the Optical Society of Korea
    • /
    • 제20권3호
    • /
    • pp.381-388
    • /
    • 2016
  • The performance of a staring infrared imaging system can be characterized based on estimating the modulation transfer function (MTF). The slant edge method is a widely used MTF estimation method, which can effectively solve the aliasing problem caused by the discrete undersampling of the infrared focal plane array. However, the traditional slant edge method has some limitations such as the low precision of the edge angle extraction and using the approximate function to fit the edge spread function (ESF), which affects the accuracy of the MTF estimation. In this paper, we propose a modified slant edge method, including an edge angle extraction method that can improve the precision of the edge angle extraction and an ESF fitting algorithm which is based on the transfer function model of the imaging system, to enhance the accuracy of the MTF estimation. This modified slant edge method presents higher estimation accuracy and better immunity to noise and edge angle than other traditional methods, which is demonstrated by the simulation and application experiments operated in our study.

Creepage Distance Measurement Using Binocular Stereo Vision on Hot-line for High Voltage Insulator

  • He, Wenjun;Wang, Jiake;Fu, Yuegang
    • Current Optics and Photonics
    • /
    • 제2권4호
    • /
    • pp.348-355
    • /
    • 2018
  • How to measure the creepage distance of an insulator quickly and accurately is a problem for the power industry at present, and the noticeable concern is that the high voltage insulation equipment cannot be measured online in the charged state. In view of this situation, we develop an on-line measurement system of creepage distance for high voltage insulators based on binocular stereo vision. We have proposed a method of generating linear structured light using a conical off-axis mirror. The feasibility and effect of two ways to solve the interference problem of strong sunlight have been discussed, one way is to use bandpass filters to enhance the contrast ratio of linear structured light in the images, and the other way is to process the images with adaptive threshold segmentation and feature point extraction. After the system is calibrated, we tested the measurement error of the on-line measurement system with a composite insulator sample. Experimental results show that the maximum relative error is 1.45% and the average relative error is 0.69%, which satisfies the task requirement of not more than 5% of the maximum relative error.

Design of a Beam-coupling System for a Chip-integrated Spectrometer with a Discrete Linear Waveguide

  • Liu, Zhiying;Jiang, Xin;Li, Mingyu
    • Current Optics and Photonics
    • /
    • 제4권3호
    • /
    • pp.229-237
    • /
    • 2020
  • In this study, a beam-coupling system is designed to improve the coupling efficiency of achip-integrated spectrometer when the waveguide is arranged in a linear and discrete manner. In the proposed system the beam is shaped to be anti-Gaussian, to deposit adequate energy in the edge waveguides. The beam is discretely coupled to the corresponding waveguide by a microlens array, to improve the coupling efficiency, and is compressed by a toroidal lens to match the linear discrete waveguides. Based on the findings of this study, the coupling efficiency of the spectrometer is shown to increase by a factor of 2.57. Accordingly, this study provides a reference basis for the improvement of the coupling efficiency of other similar spectrometers.

Adaptive Detection of a Moving Target Undergoing Illumination Changes against a Dynamic Background

  • Lu, Mu;Gao, Yang;Zhu, Ming
    • Journal of the Optical Society of Korea
    • /
    • 제20권6호
    • /
    • pp.745-751
    • /
    • 2016
  • A detection algorithm, based on the combined local-global (CLG) optical-flow model and Gaussian pyramid for a moving target appearing against a dynamic background, can compensate for the inadaptability of the classic Horn-Schunck algorithm to illumination changes and reduce the number of needed calculations. Incorporating the hypothesis of gradient conservation into the traditional CLG optical-flow model and combining structure and texture decomposition enable this algorithm to minimize the impact of illumination changes on optical-flow estimates. Further, calculating optical-flow with the Gaussian pyramid by layers and computing optical-flow at other points using an optical-flow iterative with higher gray-level points together reduce the number of calculations required to improve detection efficiency. Finally, this proposed method achieves the detection of a moving target against a dynamic background, according to the background motion vector determined by the displacement and magnitude of the optical-flow. Simulation results indicate that this algorithm, in comparison to the traditional Horn-Schunck optical-flow algorithm, accurately detects a moving target undergoing illumination changes against a dynamic background and simultaneously demonstrates a significant reduction in the number of computations needed to improve detection efficiency.

Destripe Hyperspectral Images with Spectral-spatial Adaptive Unidirectional Variation and Sparse Representation

  • Zhou, Dabiao;Wang, Dejiang;Huo, Lijun;Jia, Ping
    • Journal of the Optical Society of Korea
    • /
    • 제20권6호
    • /
    • pp.752-761
    • /
    • 2016
  • Hyperspectral images are often contaminated with stripe noise, which severely degrades the imaging quality and the precision of the subsequent processing. In this paper, a variational model is proposed by employing spectral-spatial adaptive unidirectional variation and a sparse representation. Unlike traditional methods, we exploit the spectral correction and remove stripes in different bands and different regions adaptively, instead of selecting parameters band by band. The regularization strength adapts to the spectrally varying stripe intensities and the spatially varying texture information. Spectral correlation is exploited via dictionary learning in the sparse representation framework to prevent spectral distortion. Moreover, the minimization problem, which contains two unsmooth and inseparable $l_1$-norm terms, is optimized by the split Bregman approach. Experimental results, on datasets from several imaging systems, demonstrate that the proposed method can remove stripe noise effectively and adaptively, as well as preserve original detail information.

BER Analysis of Coherent Free Space Optical Communication Systems with Holographic Modal Wavefront Sensor

  • Liu, Wei;Yao, Kainan;Huang, Danian;Cao, Jingtai;Wang, Liang;Gu, Haijun
    • Current Optics and Photonics
    • /
    • 제1권1호
    • /
    • pp.1-6
    • /
    • 2017
  • Degradation of bit-error-rate (BER), caused by atmospheric turbulence, seriously hinders the performance of coherent Free Space Optical (FSO) communication systems. An adaptive optics system proves to be effective in suppressing the atmospheric turbulence. The holographic modal wavefront sensor (HMWFS) proposed in our previous work, noted for its fast detecting rates and insensitivity to beam scintillation, is applied to the coherent FSO communication systems. In this paper, based on our previous work, we first introduce the principle of the HMWFS in brief and give the BER of the coherent FSO with homodyne detection in theory, and then analyze the improvement of BER for a coherent FSO system based on our previous simulation works. The results show that the wavefront sensor we propose is better for weak atmospheric turbulence. The most obvious advantages of HMWFS are fast detecting rates and insensitivity to beam scintillation.

A Miniaturized Catadioptric Laser-Irradiation-Precision Test System

  • Liu, Huan;Sun, Hao;Wang, Chunyan
    • Current Optics and Photonics
    • /
    • 제5권2호
    • /
    • pp.164-172
    • /
    • 2021
  • In this paper a catadioptric laser-irradiation-precision test system is designed, to achieve a high-precision laser-irradiation-accuracy test. In this system, we adopt the method of imaging the entire target surface at a certain distance to realize the measurement of laser-irradiation precision. The method possesses the advantages of convenient operation, high sensitivity, and good stability. To meet the test accuracy requirement of 100 mm/km (0.01%), the coma, field curvature, and distortion over the entire field of view should be eliminated from the optical system's design. Taking into account the whole length of the tube and the influence of stray light on the structure type, a catadioptric system with a hood added near the primary imaging surface is designed. After optimization using the ZEMAX software, the modulation transfer function (MTF) of the designed optical system is 0.6 at 30 lp/mm, the full-field-of-view distortion is better than 0.18%, and the energy concentration in the 10-㎛-radius surrounding circle reaches about 90%. The illumination-accuracy test results show that the measurement accuracy of the radiation hit rate is better than 50 mm when the test distance is 1 km, which is better than the requirement of 100 mm/km for the laser-irradiation-accuracy test.

Opto-mechanical Design of Monocrystalline Silicon Mirror for a Reflective Imaging Optical System

  • Liu, Xiaofeng;Zhang, Xin;Tian, Fuxiang
    • Current Optics and Photonics
    • /
    • 제6권3호
    • /
    • pp.236-243
    • /
    • 2022
  • Monocrystalline silicon has excellent properties, but it is difficult to design and manufacture silicon-based mirrors that can meet engineering applications because of its hard and brittle properties. This paper used monocrystalline silicon as the main mirror material in an imaging system to carry out a feasibility study. The lightweight design of the mirror is completed by the method of center support and edge cutting. The support structure of the mirror was designed to meet the conditions of wide temperature applications. Isight software was used to optimize the feasibility sample, and the optimized results are that the root mean square error of the mirror surface is 3.6 nm, the rigid body displacement of the mirror is 2.1 ㎛, and the angular displacement is 2.5" under the conditions of a temperature of ∆20 ℃ and a gravity load of 1 g. The optimized result show that the silicon-based mirror developed in this paper can meet the requirements of engineering applications. This research on silicon-based mirrors can provide guidance for the application of other silicon-based mirrors.