• Title/Summary/Keyword: Chan-Chyan-Srivastava polynomials

Search Result 1, Processing Time 0.018 seconds

SOME BILATERAL GENERATING FUNCTIONS INVOLVING THE CHAN-CHYAN-SRIVASTAVA POLYNOMIALS AND SOME GENERAL CLASSES OF MULTIVARIABLE POLYNOMIALS

  • Gaboury, Sebastien;Ozarslan, Mehmet Ali;Tremblay, Richard
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.4
    • /
    • pp.783-797
    • /
    • 2013
  • Recently, Liu et al. [Bilateral generating functions for the Chan-Chyan-Srivastava polynomials and the generalized Lauricella function, Integral Transform Spec. Funct. 23 (2012), no. 7, 539-549] investigated, in several interesting papers, some various families of bilateral generating functions involving the Chan-Chyan-Srivastava polynomials. The aim of this present paper is to obtain some bilateral generating functions involving the Chan-Chyan-Sriavastava polynomials and three general classes of multivariable polynomials introduced earlier by Srivastava in [A contour integral involving Fox's H-function, Indian J. Math. 14 (1972), 1-6], [A multilinear generating function for the Konhauser sets of biorthogonal polynomials suggested by the Laguerre polynomials, Pacific J. Math. 117 (1985), 183-191] and by Kaano$\breve{g}$lu and $\ddot{O}$zarslan in [Two-sided generating functions for certain class of r-variable polynomials, Mathematical and Computer Modelling 54 (2011), 625-631]. Special cases involving the (Srivastava-Daoust) generalized Lauricella functions are also given.