• Title/Summary/Keyword: Chamber experiment

Search Result 757, Processing Time 0.023 seconds

The Analysis of the Heat Transfer Characteristic in a PDP Ventilation Chamber (PDP용 배기로내 열전달 현상에 관한 해석)

  • Park, Hyung-Gyu;Chung, Jae-Dong;Kim, Charn-Jung;Lee, Joon-Sik;Park, Heui-Jae;Cho, Young-Man;Cho, Hae-Kyun;Park, Deuk-Il
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.385-391
    • /
    • 2000
  • An analysis of the heat transfer in a PDP ventilation chamber has been conducted to investigate the required heat curve and temperature uniformity of the panels. Firstly, experiment in a test chamber has been carried out and compared with the unsteady 3D numerical simulation. Reasonable agreement was found, which suggested that the employed numerical model had its credibility in an actual PDP ventilation process. On this ground, tact-type heating/cooling system was analyzed. The panel temperature was more uniform in the $40^{\circ}C$ tact-type system than in the $80^{\circ}C$ one. Comparison of full simulation of a cart and simplified simulation of one panel shows the panel pitch, which is closely related to a production rate, can be also predicted.

  • PDF

Determination of Ignition Squence and Estimation of Injector Life Extension Technique in Liquid Rocket Engine (소형 액체 로켓 엔진에서의 점화 시퀀스 결정 및 인젝터 수명 연장 기법 평가)

  • Park, Jeong;Kim, Yong-Wook;Kim, Young-Han; Moon, Il-Yoon;Lee, Jae-Yong;Kang, Sun-Il;Chung, Yong-Gahp;Cho, Nam-Kyung;Oh, Seung-Hyup
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.1
    • /
    • pp.43-53
    • /
    • 2000
  • Experimental studies on determination of the supply leading time of propellants to combustion chamber have been made to stably and efficiently guarantee the ignition process with liquid rocket engine. The propellant used is a Jet A-1 as fuel and a liquid oxygen as oxidizer. Unlike impinging FOOF type of injectors are arranged radially and the designed O/F ratio is 2.34. The present experiment program also includes the stability on the quadlet type of ignitor using the triethylalumimum as an ignition source and injector life tests. Experimental results clarifies that the propellant supply through LOx leading to combustion chamber is proper for stable ignition and combustion processes based on the fuel and oxidizer manifold pressures, combustion chamber pressure, and the variation of flame length from the nozzle exit with lapse time, and shows that the leading supply time of propellants affects the engine performance little. The effect of positioning cooling holes is remarkable to protect the injector face.

  • PDF

An Experimental Study on the Effects of Intake Manifold Shapes on the Torque Characteristics in a 3-Cylinder LPG Engine (흡기다기관 형상변화가 3기통 LPG엔진의 토크 특성에 끼치는 영향에 관한 실험적 연구)

  • 이지근;이한풍;강신재;노병준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.175-182
    • /
    • 1997
  • The purpose of this study is to investigate the effects of intake manifold shapes to improve the engine performance in a 3-cylinder LPG engine with a closed loop fuel supply system. To know the flow resistance of intake manifolds with shape, the intake negative pressure of each runner in intake manifolds were measured by using the digital pressure meter at each driving condition. And, the engine torque and power have been measured with an engine dynamometer while adjusting the optimal fuel consumption ratio with a solenoid driver. As 속 results form this experiment, the torque characteris- tics were more improved with the plenum chamber(B type intake manifold) than with the banana type(A type intake manifold). The torque characteristics were improved at mid-engine speed(rpm) range as the inner diameter of the intake manifold became smaller. And also the optimum volume among the examined plenum chamber volume was 0.74 times(590cc) the displacement of the test engine.

  • PDF

An Experimental Study on Semiconductor Process Chiller for Dual Channel (듀얼채널을 적용한 반도체공정용 칠러의 실험적 연구)

  • Cha, Dong-An;Kwon, Oh-Kyung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.11
    • /
    • pp.760-766
    • /
    • 2010
  • Excessive heat occurs during semiconductor manufacturing process. Thus, precise control of temperature is required to maintain constant chamber-temperature and also wafer-temperature in the chamber. Compared to an industrial chiller, semiconductor chiller's power consumption is very high due to its continuous operation for a year. Considering the high power consumption, it is necessary to develop an energy efficient chiller by optimizing operation control. Therefore, in this study, a semiconductor chiller is experimentally investigated to suggest energy-saving direction by conducting load change, temperature rise and fall and control precision experiments. The experimental study shows the cooling capacity of dual-channel chiller rises over 30% comparing to the conventional chiller. The time and power consumption in the temperature rising experiment are 43 minutes and 8.4 kWh, respectively. The control precision is the same as ${\pm}1^{\circ}C$ at $0^{\circ}C$ in any cases. However, it appears that the dual channel's control precision improves to ${\pm}0.5^{\circ}C$ when the setting temperature is over $30^{\circ}C$.

A Study on the Soot Measurement in Laminar and Turbulent Diffusion Flame Using the Laser Diagnostics (광계측 기법을 이용한 층류 및 난류 확산 화염에서의 매연 측정에 관한 연구)

  • Lee, Jun-Yong;Han, Yong-Taik;Lim, Jun-Won;Min, Kyoung-Doug
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3073-3078
    • /
    • 2008
  • In this study to find out the amount of soot, LII method, which utilizes a laser, was used in laminar diffusion flame and based upon the temperature and soot measured from the turbulent Diesel diffusion flame in the constant-volume chamber using the two-color method. Through these experiments, we could know that the LII signal is generally proportional to the soot amount in a laminar diffusion flame. And we could acquire the temperature and soot using the two-color method in a turbulent Diesel diffusion flame effectively. In addition to, this experiment revealed that the KL factor was high on parts of the chamber where the temperature dropped. On the other hand, the KL factor was low where the temperature increased rapidly. Also, it was possible to measure the highest temperature of a turbulent Diesel diffusion flame is approximately 2300K.

  • PDF

A study on control unit and system for nanoimprint equipment of the optimum conditions. (나노 임프린트 장비 최적 환경을 위한 제어 장비 및 시스템에 관한 연구)

  • Park, Gyeong-Seo;Kim, Woo-Song;Yim, Hong-Jae;Jang, Si-Yeol;Lee, Kee-Sung;Jeong, Jay-Il;Lim, Si-Hyeong;Shin, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2375-2380
    • /
    • 2008
  • Controlling of thermal environment and flow in nanoimprint process chamber is important to ensure high precision levels of products. The purpose of this paper is to build optimal nanoimprint process environment. Because of this, Optimum PI control parameter for precise temperature control has been examined. Also porous medium of ventilation system is simulated for uniform flow in the equipment chamber. The porous medium consists of mesh structure, and is installed to place which flow the influx of the air flows. PID control parameter is based on the data obtained by experiment. And then heating and cooling method which simultaneously operated was used for decreasing an error. In conclude temperature in the equipment chamber was able to control precisely in the range of ${\pm}0.1^{\circ}C$ by the PID control parameter and Deadband.

  • PDF

Heat Transfer Analysis in a PDP Ventilation Chamber (PDP용 배기로내 열전달 현상 해석)

  • Park, Hyeong-Gyu;Jeong, Jae-Dong;Kim, Chan-Jung;Lee, Jun-Sik;Park, Hui-Jae;Jo, Yeong-Man;Jo, Hae-Gyun;Park, Deuk-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.347-355
    • /
    • 2001
  • A heat transfer analysis in a ventilation chamber of Plasma Display Panel(PDP) has been conducted. The process requirement is to precisely follow prescribed temperature trajectory while maintaining temperature uniformity for each panel. Firstly, experiment in a test chamber has been carried out and the results are compared with the unsteady 3D numerical data. Reasonable agreement was found, which suggested that the employed numerical model had its credibility in actual PDP ventilation processes. On this ground, a tact-type heating/cooling system was analyzed. The panel temperature in the 40$^{\circ}C$ tact-type system was more uniform than that in the 80$^{\circ}C$ one. For improving the uniformity of panel temperature, relocation of ventilation head to the rear part and inlet flow control are required. Comparison of full simulation of a cart and simplified simulation of one panel indicates the optimized panel pitch can also be predicted.

Combustion Characteristics of a Small Hybrid Rocket Using Paraffin-Wax as Fuel (파라핀 연료를 사용하는 소형 하이브리드 로켓의 연소 특성)

  • Kim, Kwon-Ho;Park, Hyun-Chun;Baek, Seung-Wook
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.261-264
    • /
    • 2008
  • This study experimentally examines combustion characteristics of a hybrid rocket in which solid paraffin is used as a fuel, while oxidizer is pure oxygen. Especially, the experiment investigates the effects of chamber pressure and configuration of fuel grain. The pressure inside the combustion chamber is varied by changing a flow rate of oxidizer. The regression rate is observed to increase as the chamber pressure does. There also exists the effects of shape of fuel grain on thrust. Characteristic of paraffin hybrid rocket changes with shape of fuel grain. When there is a room near the injector, thrust increases. On the other hand, the room near the nozzle does not contribute to thrust increasement.

  • PDF

Design and Analysis of Test Facility for the Experiment of Transpiration Cooling in Hot-flow Condition (고온유동 조건의 분출냉각 실험을 위한 시험장치의 설계 및 해석)

  • Lee, Jungmin;Na, Jaejeong;Kang, Kyoungtaik;Kwon, Minchan;Hwang, Kiyoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.2
    • /
    • pp.46-56
    • /
    • 2013
  • The test facility with hot-air supply system is required to develop transpiration cooling materials and experimentally evaluate its performance. In the study, the facility consists of an arc-plasma generator, plenum chamber suppling cold air, and test section was designed and an internal flow analysis was executed. From CFD results, it was confirmed that the designed plenum chamber thermally safeties and ideally mixes with plasma gas and cold air in the chamber. In addition, validity of design for supplying homogeneous flow to the test section was confirmed by this analysis.

A Study on Spray Characteristics according to Design Parameters and Pressure Conditions of Industrial Y-jet Nozzle (산업용 Y-jet 노즐의 설계변수 및 압력 조건에 따른 분무특성에 관한 연구)

  • Lee, Sang Ji;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.24 no.3
    • /
    • pp.137-144
    • /
    • 2019
  • The Y-jet nozzle has benefits such as simple design and wide operating conditions. Because of these benefits, it is used in various combustion devices including industrial boilers. The most important variables in the design of the Y-jet nozzle are the mixing chamber length, the supply diameter of the liquid fuel and gas, and the exit orifice diameter. In addition, because of the use of a twin-fluid, optimized data is required depending on the spray condition. In this study, spray experiment was carried out under the pressure condition of 7 bar or more, which is the spraying condition used in industry. There was no change in flow rate with the length of the Y-jet nozzle mixing chamber, but the difference in SMD was confirmed. Adjusting the exit orifice diameter is most important to achieve the desired flow rate. Changes in the liquid and gas inlet port diameters ratio were found to be help improve the operating range and significant difference in SMD was observed.