• Title/Summary/Keyword: Chamber Test

Search Result 1,526, Processing Time 0.022 seconds

A Study of the Temperature Dependency for Photocatalytic VOC Degradation Chamber Test Under UVLED Irradiations (UVLED 광원을 이용한 광촉매 VOC 제거 특성 평가시 온도에 따른 농도 변화에 관한 연구)

  • Moon, Jiyeon;Lee, Kyusang;Kim, Seonmin
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.755-761
    • /
    • 2015
  • Photocatalytic VOCs removal test in gas phase is generally performed by placing the light source on the outside due to maintaining a constant temperature inside the test chamber. The distance between light source and photocatalysts is importantin the VOC degradation test since the intensity of light is rapidly decreased as the distance farther. Especially, for the choice of light source as UVLED, this issue is more critical because UVLED light source emits lots of heat and it is hard to measure the exact concentration of VOCs due to changed temperature in the test chamber. In this study, we modified VOC removal test chamber base on the protocol of air cleaner test and evaluated the efficiency of photocatalystunder UVLED irradiation. Photocatalystsof two different samples (commercial $TiO_2$ and the synthesized vanadium doped $TiO_2$) weretested for the p-xylene degradation in the closed chamber system and compared with each other in order to exclude any experimental uncertainties. During the VOC removal test, VOC concentrations were monitored and corrected at regular time intervals because the temperature in the chamber increases ${\sim}20^{\circ}C$ due tothe heat of UVLED. The results showed that theconversion ratio of p-xylene has 40~43% difference before and after the temperature correction. Based on those results, we conclude that the VOC concentration correction must be required for the VOC removal test in a closed chamber system under UVLED light source and obtained the corrected efficiencies of various photocatlysts.

Modeling and Simulation of Combustion Chamber Test Facility Oxidizer Supply System (연소기 연소시험설비 산화제 공급시스템 해석)

  • Chun, Yonggahp;Cho, Namkyung;Han, Yeoung-Min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.92-97
    • /
    • 2012
  • The propulsion system of space launch vehicle generates thrust by supplying oxidizer and fuel to combustion chamber. KSLV-II 2nd stage engine, currently under development by KARI, is to use liquid oxygen as a oxidizer and JET-A1 as a fuel. The 2nd stage pump-fed engine is mainly composed of combustion chamber, turbo-pump and engine supply system. To develop liquid propulsion engine, the development of combustion chamber must be preceded. For performance validation of the combustion chamber, the designed and manufactured combustion chamber should be tested in combustion chamber test facility (CCTF). The detailed design for the planned CCTF in Naro Space Center was conducted. The oxidizer supply system modeling using AMESim was performed based on the results of the detailed design, and the oxidizer supply characteristics was analyzed in this paper.

Modeling and Simulation of Combustion Chamber Test Facility Oxidizer Supply System (연소기 연소시험설비 산화제 공급시스템 해석)

  • Chung, Yong-Gahp;Cho, Nam-Kyung;Han, Yeoung-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.502-506
    • /
    • 2012
  • The propulsion system of space launch vehicle generates thrust by supplying oxidizer and fuel to combustion chamber. KSLV-II 2nd stage engine, currently under development by KARI, is to use liquid oxygen as a oxidizer and JET-A1 as a fuel. The 2nd stage pump-fed engine is mainly composed of combustion chamber, turbo-pump and engine supply system. To develop liquid propulsion engine, the development of combustion chamber must be preceded. For performance validation of the combustion chamber, the designed and manufactured combustion chamber should be tested in combustion chamber test facility (CCTF). The detailed design for the planned CCTF in Naro Space Center was conducted. The oxidizer supply system modeling using AMESim was performed based on the results of the detailed design, and the oxidizer supply characteristics was analyzed in this paper.

  • PDF

Modeling and Simulation of Combustion Chamber Test Facility Fuel Supply System (연소기 연소시험 설비 연료 공급 시스템 해석)

  • Chung, Yong-Gahp;Lee, Kwang-Jin;Cho, Nam-Kyung;Han, Yeoung-Min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.4
    • /
    • pp.87-92
    • /
    • 2012
  • The propulsion system of space launch vehicle generates thrust by supplying oxidizer and fuel to combustion chamber. KSLV-II 2nd stage engine, currently under development by KARI, is to use liquid oxygen as a oxidizer and JET-A1 as a fuel. The 2nd stage pump-fed engine is mainly composed of combustion chamber, turbo-pump and engine supply system. To develop liquid propulsion engine, the development of combustion chamber must be preceded. For performance validation of the combustion chamber, the designed and manufactured combustion chamber should be tested in combustion chamber test facility (CCTF). The detailed design for the planned CCTF in Naro Space Center was conducted. The fuel supply system modeling using AMESim was performed based on the results of the detailed design, and the fuel supply characteristics was analyzed in this paper.

Sub-System Requirements of a Pressure-fed Hot-firing Test Facility for the Performance Assessment of a LRE Thrust Chamber (액체로켓엔진 연소기의 성능평가를 위한 가압식 연소시험설비의 구성 요구조건)

  • Lee, Kwang-Jin;Lim, Byoung-Jik;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.94-102
    • /
    • 2011
  • Sub-system requirements of a pressure-fed hot-firing test facility for performance assessment of a Liquid Rocket Engine(LRE) thrust chamber using Liquid oxygen and kerosene were described. These requirements were based on the experience of construction and operation of the ground hot-firing test facility which was used for the development of the KSR-III and a 30 tonf-class LRE thrust chamber. So it is expected that this paper is used as a basic material and an itemized previous review statement for the design and construction of a large hot-firing test facility.

Sub-System Requirements of a Pressure-fed Hot-firing Test Facility for the Performance Assessment of a LRE Thrust Chamber (액체로켓엔진 연소기의 성능평가를 위한 가압식 연소시험설비의 구성 요구조건)

  • Lee, Kwang-Jin;Lim, Byoung-Jik;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.63-71
    • /
    • 2010
  • Sub-system requirements of a pressure-fed hot-firing test facility for performance assessment of a Liquid Rocket Engine(LRE) thrust chamber using Liquid oxygen and kerosene were described. These requirements were based on the experience of construction and operation of the ground hot-firing test facility which was used for the development of the KSR-III and a 30 $ton_f$-class LRE thrust chamber. So it is expected that this paper is used as a basic material and an itemized previous review statement for the design and construction of a large hot-firing test facility.

  • PDF

Cold Flow and Ignition Tests for a 75-tonf Kerosene-Cooled Liquid Rocket Engine Thrust Chamber (75톤급 액체로켓엔진 케로신 냉각 연소실 수류시험 및 점화시험)

  • Kang, Dong-Hyuk;Lim, Byoung-Jik;Ahn, Kyu-Bok;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.25-28
    • /
    • 2010
  • The Cold flow and ignition tests have been performed for a technology demonstration model of 75-tonf liquid rocket engine thrust chamber which was designed and manufactured on the basis of the previous development experience of a 30-tonf liquid rocket engine thrust chamber. The hydrodynamic characteristics of the facility supply pipelines and the filling time of the cooling kerosene were obtained through the cold flow tests. The ignition cyclogram was determinded using the results and the ignition test was successfully carried out. The acquired data and test technique of present ignition test will be used in hot firing tests.

  • PDF

Design Review of Combustion Chamber/Turbo-pump Test Facility of Liquid Rocket Engine for KSLV-II (한국형발사체 액체엔진 연소기 및 터보펌프 시험설비 배치 및 설계에 대한 검토)

  • Han, Yeoung-Min;Cho, Nam-Kyung;Chung, Young-Gahp;Kim, Seung-Han;Yu, Byung-Il;Lee, Kwang-Jin;Kim, Jin-Sun;Kim, Ji-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.109-112
    • /
    • 2011
  • The result of design review and arrangement of a combustion chamber test facility(CTF) and a turbo-pump real propellant test facility(TPTF) is briefly described. The development/qualification tests of combustion chamber and turbo-pump for 75ton-class liquid rocket engine will be performed in CTF and TPTF. The critical design of hydraulic-pneumatic system, control and data acquisition system, test stand cell, and auxiliary facilities in CTF and TPTF was performed.

  • PDF

The Characteristics of Field & Mode Distributions in a Cylindrical Reverberation Chamber (원통형 구조 전자파 잔향실 내 모드 및 필드 분포 특성)

  • 김정훈;이중근
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.5
    • /
    • pp.431-436
    • /
    • 2003
  • In this paper, simulation results of an electromagnetic field and mode distributions in a cylindrical reverberation chamber were presented. Reverberation chamber is an alternative test facility for a semi anechoic chamber, which is widely used for the analysis and measurement of electromagnetic interference and immunity tests. The method of computing the number of modes in a cylindrical reverberation chamber was presented and the number of modes in a cylindrical reverberation chamber with the same volume was compared with the different ratio of radius to height. The FDTD method was used to produce field characteristics inside of rectangular, right-angled isosceles triangular, and cylinder type reverberation chambers with the same test volume.

Development of Constant Delivery Micro Pump in a Variable Pressure Environment for Intrathecal Drug Administration System (레져버에 압력이 가해지는 환경에서의 미소 정량 토출 펌프의 개발)

  • Lee, Tae Gyeong;Lee, Cheol Su;Jung, Yu Seok;Park, Gyeong Geun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.4
    • /
    • pp.387-394
    • /
    • 2017
  • This paper develops a pump system for patient with chronic pain or cancer. The pump module is consists of two micro-valve and membrane. The micro-valve is operated by a solenoid. With two solenoid valves which are connected via a drug transport line, the inlet and outlet are completely blocked. A silicon rubber membrane located between the two valves makes the flow-rate constant without any backflow. This pump module can control the flow-rate of drugs by controlling the time that the valves are opened and closed. The reservoir consists of a drug chamber and a gas chamber. As the gas chamber encloses the drug chamber, propellant gas which is injected into the gas chamber pressurizes the drug chamber regardless of volume of the drug chamber. To design the pump module, analysis a constant efficiency test, and accuracy test for the pump module were conducted.