• 제목/요약/키워드: Chalcopyrite

검색결과 278건 처리시간 0.025초

거도광산(巨道鑛山) Fe-Cu 및 Au-Bi-Cu 광상(鑛床)에 대(對)한 광물학적(鑛物學的) 및 성인적(成因的) 연구(硏究) (Mineralogy and Genesis of Fe-Cu and Au-Bi-Cu Deposits in the Geodo Mine, Korea)

  • 고재동;김수진
    • 자원환경지질
    • /
    • 제15권4호
    • /
    • pp.189-204
    • /
    • 1982
  • The Geodo mine is located in the southern limb of the Hambaeg syncline. Geology of the area consists of Paleozoic-Mesozoic sedimentary Rocks and Cretaceous igneous rocks. The important igneous rocks presumably related to skarnization and ore mineralization in the area, are the early granodiorite and the late porphyritic granodiorite. Two mineralogical types of ore deposits are recognized in the area. They are the Fe-Cu deposits in the Myobong formation and the Au-Bi-Cu deposits in the Hwajeol formation. Contact metamorphism due to granodiorite intrusion includes hornfelsization, exoskarnization and endoskarnization. Wall-rock alterations related to the Fe mineralization are grouped into the hydrothermal replacement skarnization and the hydrothermal filling skarnization. Another hydrothermal alteration is associated with the Cu mineralization. Various mineralogical analyses have been applied for the identification of minerals. They include optical microscopy, chemical analysis, etching test, X-ray diffraction, and infrared absorption spectroscopic analyses. The ore minerals in these ore deposits are classified into two groups;hypogene and supergene minerals. Hypogene minerals consist of magnetite, pyrite, chalcopyrite, and chalcocite. Supergene minerals consist of chalcocite, bornite, and geothite. Ore minerals show various kinds of ore texture: open-space filling, exsolution, replacement, and cementation texture. The gangue minerals consist of quartz, diopside, epidote, garnet and plagioclase in the hornfelsic zone, garnet, diopside, scapolite, actinolite, sericite, chlorite, quartz, and calcite in the skarn zone, and, epidote, chlorite, sericite, quartz, and calcite in the late hydrothermal alteration zone. This study shows that the Fe-Cu deposits are of metasomatic pipe type with the later hydrothermal fillings, and the Au-Bi-Cu deposits are of hydrothermal fissure-filling type. The mineralization is probably related to the intrusion of porphyritic granite.

  • PDF

시흥군(始興郡) 서면일대(西面一帶)의 광화구제구조(鑛化規制構造)와 항공사진해석결과(航空寫眞解析結果)와의 비교연구(比較硏究) (The Study of Structural Control and Relative Photogeological Interpretation on Shiheung Mine Region)

  • 지정만;류병화
    • 자원환경지질
    • /
    • 제3권4호
    • /
    • pp.199-222
    • /
    • 1970
  • One of the biggest sulfide metallic (Cu, Pb, Zn) ore deposits of South Korea is located in the area of Seo-myeon, Shiheung-gun, Gyeonggi-do. Geology of the region is mostly composed of metasediments of biotite schist, graphite schist, injection gneiss, sericite schist, limesilicate and quartzite from bottom, those are applicable to so-called Yeoncheon System of Pre-Cambrian, and granodiorite, quartz porphyry, basic dykes are outcroped in a small scope as intrusives. The origin of the ore deposit is pyrometasomatic contact deposits due to hydrothermal replacement and the ore bodies are imbedded in lower bed of limesilicate formation as impregnation and ore minerals are galena, sphalerite, marmatite, chalcopyrite, bornite, chalcocite, covellite, and the later two minerals are both hypogene and supergene. Gangue minerals are mostly skarn minerals those hornblende, diopside, epidote, hedenbergite, chlorite, garnet and quartz except primary calcite and quartz. Boundary plane (NS strike) between schists and limesilicate seemed to be primary opening of ore solution and fractures bearing $N50^{\circ}{\sim}80^{\circ}W$ are secondary structural control for localization of ore minerals and the third structural controls are both irregular gashes and schistosity in small scale. Photogeological study was carried with vertical aerial photo scaled 1: 38,000 and enlarged 1 : 10,000 under stereoscope. The study on the area convinced the fact that the geologic boundaries between rocks, limesilicates and quartzites, are traced easily by their typical topographic feature and drainage, and the main fracture patterns which derived from the result of fracture traces, that photogeologic lineament observed under stereoscope, are those bearing (1) $N20^{\circ}W$, (2) $N58^{\circ}W$, (3) $N76^{\circ}W$, (4) EW, (5) $N20^{\circ}W$, (6) $N62^{\circ}W$, (7) $N77^{\circ}W$. Among the written fractures, (5) (not schistosity, in case of fault) (6) (7) are post-mineral faults and others are pre-mineral faults and others are pre-mineral structures, and (2) (3) (6) (7) are coincided with statistical figure of 208 fractures surveyed in underground. By the result of the study, mineralized zone, are presumed to extend north and southward, total length about 4km.

  • PDF

Effects of substrate temperature on the performance of $Cu_2ZnSnSe_4$ thin film solar cells fabricated by co-evaporation technique

  • 정성훈;안세진;윤재호;곽지혜;조아라;윤경훈;김동환
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.400-400
    • /
    • 2009
  • Despite the success of Cu(In,Ga)$Se_2$ (CIGS) based PV technology now emerging in several industrial initiatives, concerns about the cost of In and Ga are often expressed. It is believed that the cost of those elements will eventually limit the cost reduction of this technology. One candidate to replace CIGS is $Cu_2ZnSnSe_4$ (CZTSe), fabricated by co-evaporation technique. Co-evaporation technique will be one of the best methods to control film composition. This type of absorber derives from the $CuInSe^2$ chalcopyrite structure by substituting half of the indium atoms with zinc and other half with tin. Energy bandgap of this material has been reported to range from 0.8eV for selenide to 1.5eV for the sulfide and large coefficient in the order of $10^{14}cm^{-1}$, which means large possibility of commercial production of the most suitable absorber by using the CZTSe film. In this work, Effects of substrate temperature of $Cu_2ZnSnSe_4$ absorber layer on the performance of thin films solar cells were investigated. We reported on some of the absorber properties and device results.

  • PDF

Aerosol Jet Deposition of $CuInS_2$ Thin Films

  • Fan, Rong;Kong, Seon-Mi;Kim, Dong-Chan;Chung, Chee-Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.159-159
    • /
    • 2011
  • Among the semiconductor ternary compounds in the I-III-$VI_2$ series, $CulnS_2$ ($CulnSe_2$) are one of the promising materials for photovoltaic applications because of the suitability of their electrical and optical properties. The $CuInS_2$ thin film is one of I-III-$VI_2$ type semiconductors, which crystallizes in the chalcopyrite structure. Its direct band gap of 1.5 eV, high absorption coefficient and environmental viewpoint that $CuInS_2$ does not contain any toxic constituents make it suitable for terrestrial photovoltaic applications. A variety of techniques have been applied to deposit $CuInS_2$ thin films, such as single/double source evaporation, coevaporation, rf sputtering, chemical vapor deposition and chemical spray pyrolysis. This is the first report that $CuInS_2$ thin films have been prepared by Aerosol Jet Deposition (AJD) technique which is a novel and attractive method because thin films with high deposition rate can be grown at very low cost. In this study, $CuInS_2$ thin films have been prepared by Aerosol Jet Deposition (AJD) method which employs a nozzle expansion. The mixed fluid is expanded through the nozzle into the chamber evacuated in a lower pressure to deposit $CuInS_2$ films on Mo coated glass substrate. In this AJD system, the characteristics of $CuInS_2$ films are dependent on various deposition parameters, such as compositional ratio of precursor solution, flow rate of carrier gas, stagnation pressure, substrate temperature, nozzle shape, nozzle size and chamber pressure, etc. In this report, $CuInS_2$ thin films are deposited using the deposition parameters such as the compositional ratio of the precursor solution and the substrate temperature. The deposited $CuInS_2$ thin films will be analyzed in terms of deposition rate, crystal structure, and optical properties.

  • PDF

The Materials Science of Chalcopyrite Materials for Solar Cell Applications

  • Rockett, Angus
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.53-53
    • /
    • 2011
  • This paper describes results for surface and bulk characterization of the most promising thin film solar cell material for high performance devices, (Ag,Cu) (In,Ga) Se2 (ACIGS). This material in particular exhibits a range of exotic behaviors. The surface and general materials science of the material also has direct implications for the operation of solar cells based upon it. Some of the techniques and results described will include scanning probe (AFM, STM, KPFM) measurements of epitaxial films of different surface orientations, photoelectron spectroscopy and inverse photoemission, Auger electron spectroscopy, and more. Bulk measurements are included as support for the surface measurements such as cathodoluminescence imaging around grain boundaries and showing surface recombination effects, and transmission electron microscopy to verify the surface growth behaviors to be equilibrium rather than kinetic phenomena. The results show that the polar close packed surface of CIGS is the lowest energy surface by far. This surface is expected to be reconstructed to eliminate the surface charge. However, the AgInSe2 compound has yielded excellent atomic-resolution images of the surface with no evidence of surface reconstruction. Similar imaging of CuInSe2 has proven more difficult and no atomic resolution images have been obtained, although current imaging tunneling spectroscopy images show electronic structure variations on the atomic scale. A discussion of the reasons why this may be the case is given. The surface composition and grain boundary compositions match the bulk chemistry exactly in as-grow films. However, the deposition of the heterojunction forming the device alters this chemistry, leading to a strongly n-type surface. This also directly explains unpinning of the Fermi level and the operation of the resulting devices when heterojunctions are formed with the CIGS. These results are linked to device performance through simulation of the characteristic operating behaviors of the cells using models developed in my laboratory.

  • PDF

$Cu(In_{1-x}Ga_x)Se_2$ Thin Film Fabrication by Powder Process

  • Song, Bong-Geun;Cho, So-Hye;Jung, Jae-Hee;Bae, Gwi-Nam;Park, Hyung-Ho;Park, Jong-Ku
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.92-92
    • /
    • 2012
  • Chalcopyrite-type Cu(In,Ga)Se2 (CIGS) is one of the most attractive compound semiconductor materials for thin film solar cells. Among various approaches to prepare the CIGS thin film, the powder process offers an extremely simple and materials-efficient method. Here, we present the mechano-chemical synthesis of CIGS compound powders and their use as an ink material for screen-printing. During the synthesis process, milling time and speed were varied in the range of 10~600 min and 100~300 rpm, respectively. Both phase evolution and powder characteristics were carefully monitored by X-ray diffraction (XRD) method, scanning electron microscope (SEM) observation, and particle size analysis by scanning mobility particle spectrometer (SMPS) and aerodynamic particle sizer (APS). We found the optimal milling condition as 200 rpm for 120 min but also found that a monolithic phase of CIGS powders without severe particle aggregation was difficult to be obtained by the mechano-chemical milling alone. Therefore, the optimized milling condition was combined with an adequate heat-treatment (300oC for 60 min) to provide the monolithic CIGS powder of a single phase with affordable particle characteristics for the preparation of CIGS thin film. The powder was used to prepare an ink for screen printing with which dense CIGS thin films were fabricated under the controlled selenization. The morphology and electrical properties of the thin films were analyzed by SEM images and hall measurement, respectively.

  • PDF

인성(仁成) 금(金)·은(銀) 광상(鑛床)에서 산출(産出)되는 광석광물(鑛石鑛物)과, 물리화학적(物理化學的) 생성환경(生成環境) (Ore Minerals and the Physicochemical Environments of the Inseong Gold-Silver Deposits, Republic of Korea)

  • 이현구;문희수
    • 자원환경지질
    • /
    • 제22권3호
    • /
    • pp.237-252
    • /
    • 1989
  • The Inseong gold-silver mine is located 3Km northwest of Suanbo, Choongcheongbugdo, Republic of Korea. The mine occurs in the shear zone formed by tension fractures within the Hwanggangri Formation of the Ogcheon metamorphic belt. Ore minerals found in the gold-silver bearing hydrothermal quartz vein composed mainly of pyrite, arsenopyrite, sphalerite, galena and minor amount of chalcopyrite, pyrrhotite, stannite, bismuthininte, native bismuth, chalcocite, electrum and tellurian canfieldite(?). The gangue minerals are quartz, calcite, chlorite and rhodochrocite. Wallrock alterations such as chloritization, silicitication, pyritization, carbonitization and sericitization can be observed in or around the quartz vein. According to the paragenetic sequence, quartz vein structure and mineral assemnlages, three different stages of ore formation can be recognized. The physico-chemical environment of ore formation in this deposit shows slight variation from stage to stage, but the condition of main ore deposition can be summarized as follows. Fluid inclusion, S-istope geothermometry and geothermometry based on mineral chemistry by use of arsenopyrite and chlorite show the ore was formed at temperature between 399 and $210^{\circ}C$ from fluids with salinities of 3.3-5.8 wt.% equivalent NaCl. It indicates that pressure during the mineralization is less than 0.6 Kb corresponding to a depth not greater than 1Km. S-isotope data suggests that thermal fluid may have magmatic origin wit some degree of mixing with meteoric water. In coclusion, the Inseong gold-silver deposit was formed at shallow depth and relatively high-temperature possibly with steep geothermal gradient under xenothermal condition.

  • PDF

청일(晴日) 금광산(金鑛山)의 유체포유물연구(有體包有物硏究) (Fluid Inclusion Study of Chungil Gold mine)

  • 장태영;지정만
    • 자원환경지질
    • /
    • 제22권3호
    • /
    • pp.193-205
    • /
    • 1989
  • Regional geology of Chungil mine is composed of Cretaceous biotite granite. Chungil ore deposits are fissure filled quartz veins which developed in Cretaceous biotite granites. Mineralogic and fluid inclusion studies were undertaken to illuminate the origin of the ore deposits. Data gathered from occurrences of ore deposits and mineral paragenesis reveals that there were two major mineralization stage. The first stage is sulfides-quartz stage. The constituents of ore minerals are chalcopyrite, sphalerite, pyrrhotite with minor amount of galena, native Au, Ag, pyrite. The second stage is gangue mineral stage. Gangue minerals are quartz, fluorite and calcite. Homogenization temperature of fluid inclusions in quartz of the first and the second stage ranges from $212^{\circ}C$ to $336^{\circ}C$ and from $154^{\circ}C$ to $355^{\circ}C$ respectively. Homogenization temperature in fluorite and calcite of the second stage ranges from $127^{\circ}C$ to $252^{\circ}C$ and from $129^{\circ}C$ to $158^{\circ}C$ but these data require positive pressure corrections. Fluid inclusions in quartz of the Bongmyeong mine, Jangja the first mine and the second mine show range of homogenization temperature from $178^{\circ}C$ to $330^{\circ}C$, from $185^{\circ}C$ to $354^{\circ}C$ and from $206^{\circ}C$ to 336 respectively. The comparison of the fluid inclusion data, mineralogical component and vein attitude of the three mines with that of Chungil mine indicates that the origin of the deposits above mentioned is elucidated to be formed under similar environment. The compositions of the sphalerite in the first stage range from 16.05 mol.% FeS to 20.36 mol.% FeS.

  • PDF

만장동광산(萬藏銅鑛山)에 대(對)한 유체포유물(流體包有物) 및 안정동위원소분석(安定同位元素分析) 연구(硏究) (Stable Isotope and Fluid Inclusion Studies of the Manjang Copper Mine, South Korea)

  • 김규한;신정숙
    • 자원환경지질
    • /
    • 제20권3호
    • /
    • pp.169-177
    • /
    • 1987
  • The Manjang copper magnetite-fluorite orebodies are imbedded within the limestone beds of the Hwajonri Formation. The ore deposits are characterized by magnetite-fluorite bearing skarn orebody in the west orebody and copper sulfide veins of the central and main orebodies. This study includes fluid inclusion geothermometry, salinity analysis, stable isotope analysis, and application of phase rule to mineral associations in skarn ore. Ore minerals are closely associated with the skarn silicates such as garnet, wollastonite and epidote. Magnetite and fluorite are remarkable in the west orebody whereas chalcopyrite is dominate in the central and main orebodies where pyrite and pyrrhotite also appear as sulfide gangues. Homogenization temperature and salinity of fluid inclusions are measured ranging between $240^{\circ}C$ and $350^{\circ}C$, 6.3~12.9 wt. percent in quartz and $220^{\circ}C$ and $350^{\circ}C$, 8.5~9.9wt. percent in fluorite, respectively. This indicates that the filling temperature and salinity are higher in quartz than in fluorite with the tendency of both to be linearly decreased suggesting an attribution of meteoric water to the mineralization. $T-fo_2$ diagram in the Ca-Fe-Si system at 1 kb and $Xco_2$=0.02 shows that the mineral assemblages with decreasing temperature are andradite-hedenbergite-calcite, hedenbergite-andradite-quartz, magnetite-andradite-quartz, and magnetite-quartz-calcite, indicating that magnetite crystallizes mostly late skarn stage at lower temperature. According to the carbon and oxygen isotopic values of the host limestone and calcite in ores, the sourec of carbon might be mixture of host limestone and deep seated carbons. Sulfur isotope data imply that ore fluids be relatively homogeneous in sulfur isotopic composition, mainly derived from igneous source.

  • PDF

페루 남동부 아뿌리막주 트라피체 동-몰리브데늄 광상의 지질 및 광화작용 (Geology and Mineralization in Trapiche Cu-Mo Deposit, Apurimac State in Southeastern Peru)

  • 양석준;허철호;김유동
    • 자원환경지질
    • /
    • 제48권6호
    • /
    • pp.525-536
    • /
    • 2015
  • 트라피체 프로젝트는 현재 탐사단계 중 후기(Advanced exploration)단계의 프로젝트이며 안다우아일라스-야우리 광상구 연변에 나타나는 다양한 반암 광상 중 일부라고 볼 수 있다. 이 광상은 몬조나이트 반암의 관입과 관계가 있으며, 또한, 올리고세 각력 파이프와 밀접한 관계를 가지고 있는 광상이다. 광화작용은 일차 유화광물인 황철석, 황동석, 반동석 및 휘수연석으로 구성된다. 2차 유화광물인 휘동석, 코벨라이트, 다이게나이트가 산출되며 산화동으로서 공작석, 흑동석, 적동석등이 산출된다. 침출작용(lixiviation)이나 부화과정 결과로서, 광화작용은 비전형적인 누대구조를 보여주기도 한다. 각력과 반암이 나타나는 구역에서는 수직적인 누대구조를 보여주는데, 북쪽 인근에서는 침출대, 2차부화대, 전이대 및 초생광화대가 나타나고 광상의 서쪽에서는 산화대 및 혼합대가 좁게 나타난다. 광상의 추정자원은 920 Mt @ 0.41% Cu이며 한계품위는 0.15%로 산정하고 있다.