• Title/Summary/Keyword: ChAT

Search Result 2,418, Processing Time 0.033 seconds

A Study of Methane Partial Oxidation Characteristics on CuFe2O4 (CuFe2O4을 이용한 메탄부분산화 특성 연구)

  • Woo, Sung Woung;Kang, Yong;Kang, Kyoung Soo;Kim, Chang Hee;Kim, Chul Sung;Park, Chu Sik
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1113-1118
    • /
    • 2008
  • Characteristics of reduction properties and carbon deposition of $CuFe_2O_4$ and $Fe_3O_4$ were investigated by using TGA, XRD, SEM, TEM and gas analysis at $900^{\circ}C$. XRD analyses indicated that the reduced $Fe_3O_4$ was composed of Fe, graphite and $Fe_3C$ phases. In contrast, the reduced $CuFe_2O_4$ did not show the graphite or $Fe_3C$ phases. It was observed by SEM analysis that the surface of the $Fe_3O_4$ was completely covered with carbon, after methane partial oxidation. From gas analysis, $CuFe_2O_4$ showed much higher methane conversion and reduction kinetics as compared to the $Fe_3O_4$ under the same reaction conditions and the estimated carbon deposition amounts on the reduced $CuFe_2O_4$ was much lower than those on the reduced $Fe_3O_4$ during the syngas production process. It was found by TEM that carbon on the reduced $Fe_3O_4$ particles has a platelet shape.

구조물 축소 모형시험과 수치해석에 의한 구조물 안전도 평가

  • 이명규
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.80-89
    • /
    • 1998
  • 본 기사에서는 기존 구조물의 구조를 변경하여 사용하는 경우 구조물 축소모형시험과 수치해석을 이용하여 안전도를 합리적으로 평가하는 절차에 관하여 지하철 정차장 구조물을 예로하여 살펴보았다. 구조물의 안전도를 평가하기 위한 구조물 축소모형 시험에서는 원형구조물의 실제 거동을 나타내는 모형의 제작이 가장 중요한 사항이다. 이를 위해서 적절한 상사율을 가지는 구조재료의 선정, 합리적인 경계조건의 설정, 실제하중을 고려한 재하방법 등을 결정하여야 한다. 구조재료의 선정과 모형의 축소율은 모형구조의 거동이 탄성범위 내인가 또는 극한거동인가에 따라 결정되는 것이 일반적이다. 안전도 평가를 위한 모형구조물의 제작과정에서는 원형구조물 거동을 수치해석을 통하여 예측하는 과정이 필요하며 이러한 사전해석(pre-analysis)을 통하여 구조물의 개략적인 거동과 측정항목을 정하며, 또한 합리적인 재하방법을 결정하게 된다. 모형구조물에 대한 재하시험을 통하여 원형구조물의 거동을 상사비를 적용하여 바로 예측할 수 있으나 재하하시험후 측정된 사항에 대하여는 모형구조물에 대한 사후해석(post-analysis)를 수행하여 측정값과 비교 검토하여 거동의 일치성을 입증하는 것이 일반적이다. 이런 과정을 거쳐 검증된 수치해석모델을 이용하여 실험에서 고려하지 않은 여러가지 하중조건에 수치적으로 검토할 수 있으며, 이를 이용하여 안전도검토와 적절한 대책을 수립할 수 있게 된다. 사전해석-모형시험-사후해석의 절차에 따른 구조물의 모형실험의 사례는 미국과 유럽에서 찾아볼 수 있으며 이를 통하여 수치해석기법의 발전이 이루어지고 있다. 현재까지 우리나라에서는 구조물 모형실험에 관련된 연구가 활발하지 못한 편이며, 상대적으로 경험이 적게 축적되어 있는 실정이다. 그러나 수치해석기법의 발전과 실제구조물의 안전도를 합리적으로 파악하기 위해서는 구조물모형 실험이 필수적이며 앞으로 연구가 활발히 이루어져야 할 분야로 사료된다.leic acid와 palmitic acid가 주요 지방산이었으나 싸리버섯은 중성지질에서 oleic acid의 함량이 높았다.n the part of special landscape management area, it is necessary to introduce landscape impact assessment system to more effective landscape management.ch served as supporting organizations. The control of the construction and management of the royal garden and landscape was held by decision makers, executors of works and management. 2) The general process of the construction and management of the royal garden and landscape included Sangji and Kyuho다 as the first step; In case of buildings and facilities, according to former examples and drawings, the most of the planning and design was already fixed. In the case of landscape, those things aimed at construction according to the existing lie of the land. The works in the 2nd step; This process was divided into the construction of facilities and planting. In case of construction of facilities, those works were done by Togam and

  • PDF

Performance Comparison of Spray-dried Mn-based Oxygen Carriers Prepared with γ-Al2O3, α-Al2O3, and MgAl2O4 as Raw Support Materials

  • Baek, Jeom-In;Kim, Ui-Sik;Jo, Hyungeun;Eom, Tae Hyoung;Lee, Joong Beom;Ryu, Ho-Jung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.285-291
    • /
    • 2016
  • In chemical-looping combustion, pure oxygen is transferred to fuel by solid particles called as oxygen carrier. Chemical-looping combustion process usually utilizes a circulating fluidized-bed process for fuel combustion and regeneration of the reduced oxygen carrier. The performance of an oxygen carrier varies with the active metal oxide and the raw support materials used. In this work, spraydried Mn-based oxygen carriers were prepared with different raw support materials and their physical properties and oxygen transfer performance were investigated to determine that the raw support materials used are suitable for spray-dried manganese oxide oxygen carrier. Oxygen carriers composed of 70 wt% $Mn_3O_4$ and 30 wt% support were produced using spray dryer. Two different types of $Al_2O_3$, ${\gamma}-Al_2O_3$ and ${\alpha}-Al_2O_3$, and $MgAl_2O_4$ were applied as starting raw support materials. The oxygen carrier prepared from ${\gamma}-Al_2O_3$ showed high mechanical strength stronger than commercial fluidization catalytic cracking catalyst at calcination temperatures below $1100^{\circ}C$, while the ones prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ required higher calcination temperatures. Oxygen transfer capacity of the oxygen carrier prepared from ${\gamma}-Al_2O_3$ was less than 3 wt%. In comparison, oxygen carriers prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ showed higher oxygen transfer capacity, around 3.4 and 4.4 wt%, respectively. Among the prepared Mn-based oxygen carriers, the one made from $MgAl_2O_4$ showed superior oxygen transfer performance in the chemical-looping combustion of $CH_4$, $H_2$, and CO. However, it required a high calcination temperature of $1400^{\circ}C$ to obtain strong mechnical strength. Therefore, further study to develop new support compositions is required to lower the calcination temperature without decline in the oxygen transfer performance.

Ginseng Saponins Enhance Maxi $Ca^{2+}-activated\;K^+$ Currents of the Rabbit Coronary Artery Smooth Muscle Cells

  • Chunl Induk;Kim Nak-Doo
    • Journal of Ginseng Research
    • /
    • v.23 no.4
    • /
    • pp.230-234
    • /
    • 1999
  • Potassium channels play an important role in regulating vascular smooth muscle tone. Four types of $K^+$ channels areknown to be expressed in vascular smooth muscle cells, and maxi $Ca^{2+}-activated\;K^+$ channel $(BK_{Ca})$ is a dominant type of $K^+$ channels in these cells. Because total ginseng saponins and ginsenoside $Rg_3$ cause vasodilation with unclear mechanisms, we hypothesized that total ginseng saponins and ginsenoside $Rg_3$ induce vasodilation via activation of maxi $Ca^{2+}-activated\;K+$ channels. Whole-cell BKe. currents were voltage-dependent with half maximum activation at -14 mV, and the currents were sensitive to nanomolar ChTX and millimolar TEA. External application of total ginseng saponins increased the anlplitude of the whole-cell BKe. current in a concentration-dependent manner. Single-channel analysis indicates that total ginseng saponins caused the channel opening for a longer period of time. Ginsenoside $Rg_3$ increased the amplitude of whole-cell $K_{Ca}$ currents without affecting voltage dependence of the currents and increased single-channel open time. Hence, the results suggest that ginseng saponin-induced vasodilation may be due to activation of $K_{Ca}$.

  • PDF

The surface kinetic properties between $BCl_3/Cl_2$/Ar plasma and $Al_2O_3$ thin film

  • Yang, Xue;Kim, Dong-Pyo;Um, Doo-Seung;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.169-169
    • /
    • 2008
  • To keep pace with scaling trends of CMOS technologies, high-k metal oxides are to be introduced. Due to their high permittivity, high-k materials can achieve the required capacitance with stacks of higher physical thickness to reduce the leakage current through the scaled gate oxide, which make it become much more promising materials to instead of $SiO_2$. As further studying on high-k, an understanding of the relation between the etch characteristics of high-k dielectric materials and plasma properties is required for the low damaged removal process to match standard processing procedure. There are some reports on the dry etching of different high-k materials in ICP and ECR plasma with various plasma parameters, such as different gas combinations ($Cl_2$, $Cl_2/BCl_3$, $Cl_2$/Ar, $SF_6$/Ar, and $CH_4/H_2$/Ar etc). Understanding of the complex behavior of particles at surfaces requires detailed knowledge of both macroscopic and microscopic processes that take place; also certain processes depend critically on temperature and gas pressure. The choice of $BCl_3$ as the chemically active gas results from the fact that it is widely used for the etching o the materials covered by the native oxides due to the effective extraction of oxygen in the form of $BCl_xO_y$ compounds. In this study, the surface reactions and the etch rate of $Al_2O_3$ films in $BCl_3/Cl_2$/Ar plasma were investigated in an inductively coupled plasma(ICP) reactor in terms of the gas mixing ratio, RF power, DC bias and chamber pressure. The variations of relative volume densities for the particles were measured with optical emission spectroscopy (OES). The surface imagination was measured by AFM and SEM. The chemical states of film was investigated using X-ray photoelectron spectroscopy (XPS), which confirmed the existence of nonvolatile etch byproducts.

  • PDF

Effect of SiO$_2/Al_2O_3$ Ratio of HZSM-5 Catalyst on the Synthesis of Methyl tert-butylether (Methyl tert-Butylether 合成에 미치는 HZSM-5 觸媒의 SiO$_2/Al_2O_3$ 比의 영향)

  • Geon-Joong Kim;Wha-Seung Ahn;Byung-Rin Cho;Lee-Mook Kwon
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.135-142
    • /
    • 1989
  • Methyl tert-butyl ether(MTBE) was synthesized from vapor phase reaction of methanol with iso-butylene over HZSM-5 catalysts, and effects of SiO$_2/Al_2O_3$ ratio in the HZSM-5 catalysts and reaction conditions on products distribution have been examined. Acid strength and acid type of each catalyst with different SiO$_2/Al_2O_3$ ratio were measured using pyridine adsorption followed by temperature programmed desorption(TPD) and IR analysis. Reactants and products adsorption characteristics on different acid sites have also been examined. As the SiO$_2/Al_2O_3$ ratio of HZSM-5 catalyst was increased, selectivity to MTBE was improved as a result of decrease in dimethylether(DME) formation at the strong acid sites. Conversion and selectivity to MTBE were also greatly enhanced as $i-C_4H_8/CH_3OH$ reactant ratio was increased, and overall about 80$^{\circ}$C was adequate for the MTBE synthesis. The properties of deposited coke on spent catalysts were examined by TG, DTA and IR spectrum analysis, indicating the amount of the coke deposit in the order of HY > H-Mordenite > HZSM-5. Even if the coke deposited on H-Mordenite was little more in amount than to that on HZSM-5, the former deactivated quickly due to its non-interconnected channel structure. For HY, owing to its lange pore size, significant $i-C_4H_8$ polymerization was occured, and rapid deactivation and severe coke formation has resulted within few hours.

  • PDF

Antioxidative Constituents from Fruit of Sorbaria sorbifolia var. stellipila MAX. (쉬땅나무(Sorbaria sorbifolia var. stellipila MAX.) 열매의 항산화 활성 성분)

  • Park, Jong-Hyuk;Kwon, Jin-A;Yang, Yoon-Jung;Han, Hyo-Sang;Han, Min-Woo;Lee, Young-Il;Kim, In-Su;Lee, Jong-Ill;Kang, Se-Chan
    • Korean Journal of Plant Resources
    • /
    • v.24 no.4
    • /
    • pp.337-342
    • /
    • 2011
  • The purpose of this study was to evaluated the antioxidative constituents and their activities of the 80% methanolic extracts from fruit of Sorbaria sorbifolia var. stellipila MAX. The isolation of active compound was performed in three steps: solvent partition, open column chromatography, and high-performance liquid chromatography (HPLC). The solvent fractions were tested for their antioxidant activities by oxygen radical absorbance capacity (ORAC). The antioxidant activity of 80% methanolic extracts by various solvent partitions was in the order of 80% MeOH (1.68 ${\pm}$ 0.027), n-hexane (1.02 ${\pm}$ 0.036), $CH_2Cl_2$ (0.95 ${\pm}$ 0.025), EtOAc (1.98 ${\pm}$ 0.065), n-BuOH (1.94 ${\pm}$ 0.054) and Water (1.28 ${\pm}$ 0.032). Therefore, the results indicated that the potential antioxidant activities and functional values were observed significantly at EtOAc fraction from fruit of S. sorbifolia, flavonoid compound isolated.

A Study on the Emissions Characteristics of a LPG Vehicle According to Various Test Modes and Ambient Conditions (다양한 시험모드와 환경조건에 따른 LPG 차량의 배출특성 연구)

  • Lee, Min-Ho;Ha, Jong-Han
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.4
    • /
    • pp.1-7
    • /
    • 2015
  • As the interest on the air pollution is gradually rising up at home and abroad, automotive and fuel researchers have been working on the exhaust emission reduction from vehicles through a lot of approaches, which consist of new engine design, innovative after-treatment systems, using clean (eco-friendly alternative) fuels and fuel quality improvement. This research has brought forward various main issues : whether PM emissions should be regulated for diesel and gasoline vehicles and whether gasoline and LPG powered vehicles can be further neglected from PM emission inventories. Finally, the greenhouse gas regulation has been discussed including automotive emission regulation. The greenhouse gas and emissions of automotive had many problem that cause of ambient pollution, health effects. Based on various test modes and ambient conditions, this paper discusses the characteristics of LPG on exhaust emissions and greenhouse gases. Also, this paper assessed emission characteristics due to the test temperature. These test temperature were performed by dividing the temperature of the test mode and the lowest local temperature in winter. Through this study, the correlation of vehicle test mode and ambient condition, exhaust emission, greenhouse gas emission was analyzed.

Greenhouse Gas Emissions from Soils Amended with Biochar (바이오차르 토양투입에 따른 온실가스 발생 변화 연구)

  • Yoo, Gayoung;Son, Yongik;Lee, Seung Hyun;Yoo, Yena;Lee, Sang Hak
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.4
    • /
    • pp.471-477
    • /
    • 2013
  • Biochar amendment to agricultural soil is regarded as a promising option to mitigate climate change and enhance soil quality. It could sequester more carbon within the soil system and increase plant yield by changing soil physicochemical characteristics. However, sustainable use of biochar requires comprehensive environmental assessment. In this sense, it is important to measure additional greenhouse gas emission from soils after biochar addition. We investigated emissions of $CO_2$, $N_2O$, and $CH_4$ from incubated soils collected from rice paddy and cultivated grassland after amendment of 3% biochar (wt.) produced from rice chaff. During incubation, soils were exposed to three wet-dry cycles ranging from 5~85% soil gravimetric water content (WC) to investigate the changes in effect of biochar when influenced by different water levels. The $CO_2$ emission was reduced in biochar treatment compared to the control at WC of 30~70% both in rice paddy and grassland soils. This indicates that biochar could function as a stabilizer for soil organic carbon and it can be effective in carbon sequestration. The $N_2O$ emission was also reduced from the grassland soil treated with biochar when WC was greater than 30% because the biochar treated soils had lower denitrification due to better aeration. In the rice paddy soil, biochar addition resulted in decrease in $N_2O$ emission when WC was greater than 70%, while an increase was noted when WC was between 30~70%. This increase might be related to the fact that available nutrients on biochar surface stimulated existing nitrifying bacterial community, resulting in higher $N_2O$ emission. Overall results imply that biochar amendment to agricultural soil can stabilize soil carbon from fast decomposition although attention should be paid to additional $N_2O$ emission when biochar addition is combined with the application of nitrogen fertilizer.

Studies of gas chromatographic analysis of malodorous S compounds in air (대기 중 악취황 성분들에 대한 GC 분석의 특성)

  • Kim, Ki-Hyun;Oh, Sang In;Choi, Y.J.
    • Analytical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.145-152
    • /
    • 2004
  • In this study, analytical characteristics of S gas detection technique were investigated against four major reduced S compounds (including hydrogen sulfide; methyl mercaptan; dimethyl sulfide (DMS); and dimethyl disulfide (DMDS)). To analyze such properties, an analytical system was constructed by combining the GC/PFPD system with the loop injection method. The results of our analysis indicated that response behavior of S gases differs greatly between compounds; H2S exhibited the weakest sensitivity of all compounds, while DMDS with two S-atom compounds the strongest sensitivity. To learn more about their response behavior on GC/PFPD method, their calibration patterns were compared using the three arbitrarily set concentration ranges of low, intermediate, and high. The results showed that calibration patterns of each compound are distinguished because of different factors. There was a line of evidence that calibration of $H_2S$ was affected noticeably by adsorptive loss within the system, whereas those of DMS and DMDS were influenced most sensitively by such factor as the linearity response at a given PMT voltage setting. The overall results of our study suggest that quantification of malordorous S compounds require a better knowledge of compound-specific response behavior against GC detection.