• Title/Summary/Keyword: Cerium oxide

Search Result 84, Processing Time 0.022 seconds

Preparation of Nano Size Cerium Oxide from Cerium Carbonate (탄산(炭酸)세륨으로부터 나노크기 산화(酸化)세륨 제조연구(製造硏究))

  • Kim, Sung-Don;Kim, Chul-Joo;Yoon, Ho-Sung
    • Resources Recycling
    • /
    • v.18 no.6
    • /
    • pp.24-29
    • /
    • 2009
  • Since cerium carbonate becomes porous cerium oxide by releasing carbon dioxide and vapour steam during calcination of cerium carbonate, nano size cerium oxide can be obtained by milling calcined cerium carbonate. Therefore cerium carbonate [$Ce_2(CO_3)3{\cdot}XH_2O$] is used generally for the preparation of nano size cerium oxide. In order to obtain nano size cerium oxide from cerium carbonate prepared by reactive crystallization of cerium chloride solution and ammonium bicarnonate solution, the effects of experimental variables in the milling and calcination of cerium carbonate, such as calcination temperature, milling time, rpm of planetary mill, amount of dispersant and ball size for milling on the size of cerium oxide was investigated in this study. Cerium oxide prepared with the conditions of calcination temperature of $700^{\circ}C$, milling time of 5 hour was 160nm mean particle size.

Synthesis of nano Cerium(IV) oxide from recycled Ce precusor (재생 세륨 전구체로부터 나노산화세륨(IV)합성)

  • Kang, Tae-Hee;Koo, Sang-Man;Jung, Choong-Ho;Hwang, Kwang-Taek;Kang, Woo-Kyu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.2
    • /
    • pp.101-107
    • /
    • 2013
  • Cerium compounds such as Cerium hydroxide ($Ce(OH)_3$), Cerium chloride ($CeCl_3{\cdot}nH_2O$), Cerium carbonate hydrate ($Ce_2(CO_3)_3{\cdot}8H_2O$), Cerium oxide ($CeO_2$) were synthesized using recycled Ce precursor. Cerium(IV) oxide of nanoparticles were obtained by Ultra-sonication. Cerium-sodium- sulfate compound was synthesized through acid-leaching and addition of sodium sulfate from 99 wt% purity of Ce precursor as a starting material that was recycled from the waste polishing slurry. Moreover Cerium hydroxide was obtained from Cerium-sodium-sulfate compound by adding to sodium hydroxide solution. Then Cerium chloride was synthesized by adding of hydrochloric acid to Cerium hydroxide. Needle-shaped Cerium carbonate hydrate was synthesized in the continuous process and Cerium(IV) oxide with 30~40 nm size was subsequently obtained by the calcinations and dispersion.

Toluene Catalytic Oxidation by Manganese-Cerium Bimetallic Catalysts (Mn-Ce 복합 산화물에 의한 톨루엔 촉매 산화)

  • Cheon Tae-Jin;Choi Sung-Woo;Lee Chang-Soep
    • Journal of Environmental Science International
    • /
    • v.14 no.4
    • /
    • pp.427-433
    • /
    • 2005
  • Activity of manganese oxide supported on ${\nu}-Al_2O_3$ was increased when cerium was added. Also, cerium-added manganese oxide on ${\nu}-Al_2O_3$ was more effective in oxidation of toluene than that without cerium. XRD result, it was observed that $MnO_2+CeO_2$ crystalline phases were present in the samples. For the used catalyst, a prominent feature has increased by XPS. TPR/TPO profiles of cerium-added manganese oxide on ${\nu}-Al_2O_3$ changed significantly increased at a lower temperature. The activity of $18.2 wt{\%}\;Mn+ 10.0 wt{\%}\;Ce/{\nu}-Al_2O_3$ increased at a lower temperature. The cerium added on the manganese catalysts has effects on the oxidation of toluene.

Preparation and characterization of ceria nanofibers obtained by electrospinning

  • Hwang, A.R.;Park, J.Y.;Koh, S.W.;Kang, Y.C.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.70-70
    • /
    • 2010
  • Cerium oxide nanofibers have been of great interest in fundamental level study. We fabricated polyvinylpyrollidone (PVP) and cerium nitrate nanofibers composite applying a mixed solution of PVP and cerium nitrate hydrate (Ce(NO3)3) with various cerium concentration from 8.87 to 35.5wt% by electrospinning process. Electrospinning method is a simple and cost-effective process to make nanoand submicro nanofiber fabrication. We applied 0.69 kV/cm of electric field between the capillary and a drum collector covered with aluminum foil. Cerium oxide nanofibers were obtained after calcination of PVP/Ce(NO3)3 nanofibers composite at 573, 873 and 1273K, which were chosen by thermal gravimetry analysis. The obtained nanofibers were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS). When the viscosity of the electrospinning solution was high named over 60 cP, only nano and submicro-sized cerium oxide fibers were collected. X-ray photoelectron spectroscopy (XPS) was performed for investigation of the chemical nature of the obtained ceria nanofibers. After we calcined the PVP/ceria nanocomposites, metallic cerium was oxidized to cerium oxide including ceria.

  • PDF

Separation of Rare Earth and Aluminium from the Dried Powder of Waste Cerium Polishing Slurry (세륨연마재 폐슬러리 건조분말로부터 희토류와 알루미늄의 분리)

  • Yoon Ho-Sung;Kim Chul-Joo;Kim Sung-Don;Lee Jin-Yaung;Cho Sung-Wook;Kim Joon-Soo
    • Resources Recycling
    • /
    • v.12 no.5
    • /
    • pp.10-15
    • /
    • 2003
  • In this study, the separation of rare earths and aluminium from the dried powder of waste cerium polishing slurry was investigated. Since cerium oxide, 40% of rare earths, is the most stable state in rare earth, the dissolution of cerium oxide in acid solution is not easy. Therefore the dissolution process of cerium oxide by sulfation was examined in order to increase the recovery of rare earth. The rare earths could be separated from aluminum by double salt precipitation using sodium sulfate.

Preparation and Characterization of Cerium Oxide/Silica Composite Particles (세륨 옥사이드/실리카 복합입자 제조 및 특성분석)

  • Koh, Seo Eun;Shim, Jongwon;Jin, Byung Suk
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.425-431
    • /
    • 2018
  • Composite particles of porous silica and cerium oxide nanoparticles blocking UV/blue light were prepared through a dry coating process. Various composite particles were prepared by varying conditions such as the mixing ratio of cerium oxide and silica, and the chamber rotating speed of mechano fusion system. The surface morphology of the composite particles was observed with SEM and the composition was analyzed using X-ray fluorescence (XRF). When the cerium oxide/silica composite particles were dispersed in water, the transparency and dispersion stability of the colloidal solution were improved. In addition, the fluidity and spreadability of the particle powder were enhanced by making composite particles. These results show that cerium oxide/silica composite particles can be used as functional cosmetic ingredients for UV/blue light protection.

Synthesis of Nanostructured Ceria Powders for an Oxygen-sensor by Thermochemical Process (열화학적 방법에 의한 산소센서용 세리아 나노분말 합성)

  • Lee Dong-Won;Choi Joon-Hwan;Lim Tae-Soo;Kim Yong-Jin
    • Journal of Powder Materials
    • /
    • v.13 no.3 s.56
    • /
    • pp.192-198
    • /
    • 2006
  • The nanostructured cerium oxide powders were synthesized by spray thermal decomposition process for the use as the raw materials of resistive oxygen sensor. The synthesis routes consisted of 1) spray drying of water based organic solution made from cerium nitrate hydrate ($Ce(NO_3){_3}6H_2O$) and 2) heat treatment of spray dried precursor powders at $400^{\circ}C$ in air atmosphere to remove the volatile components and identically to oxidize the cerium component. The produced powders have shown the loose structure agglomerated with extremely fine cerium oxide particles with about 15 nm and very high specific surface area ($110m^2/g$). The oxygen sensitivity, n ($Log{\propto}Log (P_{O2}/P^o)^{-n}$ and the response time, $t_{90}$ measured at $600^{\circ}C$ in the sample sintered at $1000^{\circ}C$, were about 0.25 and 3 seconds, respectively, which had much higher performances than those known in micron or $100{\sim}200nm$ sized sensors.

Separation of Cerium Hydroxide from Wasted Cerium Polishing Powders by the Aeration and Acidity-Controlling Method (폐세륨연마재 건조분말로부터 공기산화 및 산도조절에 의한 수산화세륨의 분리회수)

  • Yoon Ho-Sung;Kim Chul-Joo;Eom Hyoung-Choon;Kim Joon-Soo
    • Resources Recycling
    • /
    • v.14 no.6 s.68
    • /
    • pp.3-9
    • /
    • 2005
  • In this study, the separation and recovery of cerium hydroxide was investigated from the wasted cerium polishing powders. Waste cerium polishing powder contains $64.5\;wt\%$ of rare earth oxide and the content of cerium oxide is $36.5\;wt\%$. Since cerium oxide, $56.3\%$ of rare earths, is the most stable state in rare earth, the dissolution of cerium oxide in acid solution is not easy. Therefore the process of rare earth oxide by sulfation and water leaching was examined in order to increase the recovery of rare earth. Rare earth elements were recovered in the form of $\Re{\cdot}Na(SO_{4})_{2}$ by the addition of sodium sulfate to leached solution. The slurry of rare earth hydroxide was prepared by the addition of $\Re{\cdot}Na(SO_{4})_{2}$ to sodium hydroxide solution. After the oxidation of cerous hydroxide($CE(OH)_{3}$) to ceric hydroxide($CE(OH)_{3}$) by aeration, ceric hydroxide was separated from other rare earth hydroxides by controlling the acidity of solution.

Acute Toxicity and Tissue Distribution of Cerium Oxide Nanoparticles by a Single Oral Administration in Rats

  • Park, Eun-Jung;Park, Young-Kwon;Park, Kwang-Sik
    • Toxicological Research
    • /
    • v.25 no.2
    • /
    • pp.79-84
    • /
    • 2009
  • Cerium oxide nanoparticles (size: 30 nm) were prepared by the supercritical synthesis method, Acute oral toxicity and tissue distribution of the nanoparticles were evaluated by a single administration in rats. Oral administration of the nanoparticles to the rats did not lead to death when the animals were treated by a dose of 5 g/kg (high dose) as well as 100 mg/kg (low dose). Abnormal clinical signs, changes in serum biochemistry and hematology were not observed in high-dose treated group compared to the vehicle control group. Lesions in liver, lung and kidney were not observed in high-dose treated group by histopathological examination. Tissue distribution analysis in liver, kidney, spleen, lung, testis and brain was performed on day 1, day 7 and day 14 after treatment. The average values of the accumulated cerium oxide nanoparticles were elevated in all tissues but statistical significance was only shown in lung. Low levels of tissue distributions after a single oral administration seem to be the low bioavailability of the nanoparticles.

Oxygen-Response Ability of Hydrogen-Reduced Nanocrystalline Cerium Oxide

  • Lee, Dong-Won
    • Journal of Powder Materials
    • /
    • v.18 no.3
    • /
    • pp.250-255
    • /
    • 2011
  • The potential application of ultrafine cerium oxide (ceria, $CeO_2$) as an oxygen gas sensor has been investigated. Ceria was synthesized by a thermochemical process: first, a precursor powder was prepared by spray drying cerium-nitrate solution. Heat treatment in air was then performed to evaporate the volatile components in the precursor, thereby forming nanostructured $CeO_2$ having a size of approximately 20 nm and specific surface area of 100 $m^2/g$. After sintering with loosely compacted samples, hydrogen-reduction heat treatment was performed at 773K to increase the degree of non-stoichiometry, x, in $CeO_{2-x}$. In this manner, the electrical conductivity and oxygen-response ability could be enhanced by increasing the number of oxygen vacancies. After the hydrogen reduction at 773K, $CeO_{1.5}$ was obtained with nearly the same initial crystalline size and surface. The response time $t_{90}$ measured at room temperature was extremely short at 4 s as compared to 14 s for normally sintered $CeO_2$. We believe that this hydrogen-reduced ceria can perform capably as a high-performance oxygen sensor with good response abilities even at room temperature.