• Title/Summary/Keyword: Cerebral ischemia

Search Result 439, Processing Time 0.041 seconds

The Neuroprotective Effects of Angelicae gigantis Radix on Focal Cerebral Ischemia in the Rat (백서의 국부 뇌경색에 대한 당귀의 신경보호 효과)

  • 정정욱;장우석;오용성;이소연;박치상;박창국
    • The Journal of Korean Medicine
    • /
    • v.24 no.2
    • /
    • pp.204-212
    • /
    • 2003
  • Current therapy for acute ischemic stroke is highly focused on neuroprotective agents, and many herbal medicines have been challenged for experimental models. The aim of this study is to investigate whether Angelicae gigantis Radix can protect nerve cells against ischemic neural damage of middle cerebral artery occlusion (MCAO) in rats' brains. Rats were treated with Angelicae gigantis Radix immediately after 2 hours of MCAO for 7 days. On the 7th day, the brains of the rats were sliced through the hippocampus and dyedby c-Fos immunohistochemistry stain and cresyl violet stain for microscopic examination. The number of viable neurons and c-Fos immunoreactive cells in CA1 regions was counted. MCAO caused significant decrease in density of neurons and c-Fos immunoreactive cells compared to those of sham-operated rats. Administration of Angelicae gigantis Radix significantly elevated MCAO-induced decrease in density of neurons and c-Fos immunoreactive cells. These results suggest that the neuroprotective effect of Angelicae gigantis Radix against focal cerebral ischemia is related to c-Fos gene expression. Thus, these findings indicate that Angelicae gigantis Radix can be used for treatment and prevention of cerebral ischemia.

  • PDF

Neuroprotective potential of imatinib in global ischemia-reperfusion-induced cerebral injury: possible role of Janus-activated kinase 2/signal transducer and activator of transcription 3 and connexin 43

  • Wang, Jieying;Bai, Taomin;Wang, Nana;Li, Hongyan;Guo, Xiangyang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.11-18
    • /
    • 2020
  • The present study was aimed to explore the neuroprotective role of imatinib in global ischemia-reperfusion-induced cerebral injury along with possible mechanisms. Global ischemia was induced in mice by bilateral carotid artery occlusion for 20 min, which was followed by reperfusion for 24 h by restoring the blood flow to the brain. The extent of cerebral injury was assessed after 24 h of global ischemia by measuring the locomotor activity (actophotometer test), motor coordination (inclined beam walking test), neurological severity score, learning and memory (object recognition test) and cerebral infarction (triphenyl tetrazolium chloride stain). Ischemia-reperfusion injury produced significant cerebral infarction, impaired the behavioral parameters and decreased the expression of connexin 43 and phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in the brain. A single dose administration of imatinib (20 and 40 mg/kg) attenuated ischemia-reperfusion-induced behavioral deficits and the extent of cerebral infarction along with the restoration of connexin 43 and p-STAT3 levels. However, administration of AG490, a selective Janus-activated kinase 2 (JAK2)/STAT3 inhibitor, abolished the neuroprotective actions of imatinib and decreased the expression of connexin 43 and p-STAT3. It is concluded that imatinib has the potential of attenuating global ischemia-reperfusion-induced cerebral injury, which may be possibly attributed to activation of JAK2/STAT3 signaling pathway along with the increase in the expression of connexin 43.

Neuroprotective Effect of Resveratrol on Acute Brain Ischemia Reperfusion Injury by Measuring Annexin V, p53, Bcl-2 Levels in Rats

  • Kizmazoglu, Ceren;Aydin, Hasan Emre;Sevin, Ismail Ertan;Kalemci, Orhan;Yuceer, Nurullah;Atasoy, Metin Ant
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.6
    • /
    • pp.508-512
    • /
    • 2015
  • Background : Cerebral ischemia is as a result of insufficient cerebral blood flow for cerebral metabolic functions. Resveratrol is a natural phytoalexin that can be extracted from grape's skin and had potent role in treating the cerebral ischemia. Apoptosis, a genetically programmed cellular event which occurs after ischemia and leads to biochemical and morphological changes in cells. There are some useful markers for apoptosis like Bcl-2, bax, and p53. The last reports, researchers verify the apoptosis with early markers like Annexin V. Methods : We preferred in this experimental study a model of global cerebral infarction which was induced by bilateral common carotid artery occlusion method. Rats were randomly divided into 4 groups : sham, ischemia-reperfusion (I/R), I/R plus 20 mg/kg resveratrol and I/R plus 40 mg/kg resveratrol. Statistical analysis was performed using Sigmastat 3.5 ve IBM SPSS Statistics 20. We considered a result significant when p<0.001. Results : After administration of resveratrol, Bcl-2 and Annexin levels were significantly increased (p<0.001). Depending on the dose of resveratrol, Bcl2 levels increased, p53 levels decreased but Annexin V did not effected. P53 levels were significantly increased in ishemia group, so apoptosis is higher compared to other groups. Conclusion : In the acute period, Annexin V levels misleading us because the apoptotic cell counts could not reach a certain level. Therefore we should support our results with bcl-2 and p53.

A Study on Cerebral Ischemia-Reperfusion Injury: Involvement of Platelet-Activating Factor (뇌의 허혈-재관류손상에 대한 연구: 혈소판활성인자의 관련)

  • Lee, Won-Suk;Rhim, Byung-Yong;Hong, Ki-Whan
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.1
    • /
    • pp.1-8
    • /
    • 1993
  • To elucidate involvement of platelet-activating factor (PAF) in cerebral ischemia-reperfusion injury, male Sprague-Dawley rats and albino mice of either sex were subjected to a 10-min bilateral carotid artery occlusion and 6-hr recirculation. The McGraw stroke index in mice was markedly inhibited by PAF antagonists, BN 52021 and CV 6209 (1 mg/kg, i.p., each) When they were administered 10 min before bilateral carotid artery occlusion or 1 hr after reperfusion. The increases in brain water content were significantly attenuated by treatment with BN 52021 or CV 6209 in both animals. BN 52021 exhibited a significant improvement in the postischemic blood pressure change in association with a beneficial effect on the delayed dilatation of pial arterioles after 10 min of ischemia. Thus it is suggested that PAF plays an important role as an endogenous mediator in development of cerebral ischemia-reperfusion injury, and further, specific antagonists to PAF will be able to prevent or reverse the pathological sequelae of cerebral ischemia.

  • PDF

Pharmacological Actions of New Woohwangchungsimwon Pill on Cerebral Ischemia and Central Nervous System (신우황청심원의 뇌허혈 및 중추신경계에 대한 약효)

  • Cho, Tai-Soon;Lee, Sun-Mee;Lee, Eun-Bang;Cho, Sung-Ig;Kim, Yong-Kee;Shin, Dae-Hee;Park, Dai-Kyu
    • YAKHAK HOEJI
    • /
    • v.41 no.6
    • /
    • pp.817-828
    • /
    • 1997
  • In order to investigate pharmacological properties of New Woohwangchungsimwon Pill (NWCH) and Woohwangchungsimwon Pill(WCH), effects of NWCH and WCH on cerebral ischemia and central nervous system were compared. Cerebral ischemia insult was performed using unilateral carotid artery occlusion in Mongolian gerbils. The histological observations showed preventive effect of NWCH and WCH treatments with ischemia-induced brain damage. The ATP in brain tissue was decreased in vehicle-treated ischemic gerbils. This decrease was prevented by NWCH and WCH treatment. In contrast to what was seen with ATP, the lactate and lipid peroxide were both elevated in vehicle-treated ischemic gerbils. This elevation was inhibited by NWCH and WCH treatments. In central nervous system, NWCH and WCH had sedative effect in rotarod and spontaneous activity test, but no effects on the hexobarbital-induced sleeping time. And, NWCH and WCH had weak anticonvulsion effects in electric shock- and pentetrazol-induced convulsion test. NWCH and WCH increased the respiration rate, but decreased the respiration depth in rats. Furthermore, NWCH and WCH showed antistress effect. Our findings suggest that the pharmacological profiles of NWCH on cerebral ischemia and central nervous system are similar to that of WCH.

  • PDF

Intranasal Administration of Interleukin-1 Receptor Antagonist in a Transient Focal Cerebral Ischemia Rat Model

  • Lee, Jae Hoon;Kam, Eun Hee;Kim, Jeong Min;Kim, So Yeon;Kim, Eun Jeong;Cheon, So Yeong;Koo, Bon-Nyeo
    • Biomolecules & Therapeutics
    • /
    • v.25 no.2
    • /
    • pp.149-157
    • /
    • 2017
  • The interleukin-1 receptor antagonist (IL-1RA) is a potential stroke treatment candidate. Intranasal delivery is a novel method thereby a therapeutic protein can be penetrated into the brain parenchyma by bypassing the blood-brain barrier. Thus, this study tested whether intranasal IL-1RA can provide neuroprotection and brain penetration in transient cerebral ischemia. In male Sprague-Dawley rats, focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) for 1 h. The rats simultaneously received 50 mg/kg human IL-1RA through the intranasal (IN group) or intraperitoneal route (IP group). The other rats were given 0.5 mL/kg normal saline (EC group). Neurobehavioral function, infarct size, and the concentration of the administered human IL-1RA in the brain tissue were assessed. In addition, the cellular distribution of intranasal IL-1RA in the brain and its effect on proinflammatory cytokines expression were evaluated. Intranasal IL-1RA improved neurological deficit and reduced infarct size until 7 days after MCAO (p<0.05). The concentrations of the human IL-1RA in the brain tissue 24 h after MCAO were significantly greater in the IN group than in the IP group (p<0.05). The human IL-1RA was confirmed to be co-localized with neuron and microglia. Furthermore, the IN group had lower expression of $interleukin-1{\beta}$ and tumor necrosis $factor-{\alpha}$ at 6 h after MCAO than the EC group (p<0.05). These results suggest that intranasal IL-1RA can reach the brain parenchyma more efficiently and provide superior neuroprotection in the transient focal cerebral ischemia.

Microglial activation and tyrosine hydroxylase immunoreactivity in the substantia nigral region following transient focal ischemia in rats

  • Jung, Ji-Wook;Oh, Jin-Kyung;Huh , Young-Buhm;Ryu, Jong-Hoon
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.305.1-305.1
    • /
    • 2002
  • The temporal profiles of the changes of dopaminergic cell and microglial activation induced by transient cerebral ischemia was investigated in the substantia nigral region which lay outside ischemic areas of rat brain after middle cerebral artery occlusion (MCAO). Transient cerebral ischemia was induced by intraluminal occlusion of the right middle cerebral artery for 2 hand reperfusion was continued for 1, 2. 3. 7. 10. 14. 30, 60. and 120 days. Activated microglial cells were visualized with immunohistochmistry using OX-43 antibody. (omitted)

  • PDF

Mechanism Study of Cheonmabanhwa-Tang on the Cerebral Ischemia in Rats - Focusing arround Improvement in Changes of Cerebral Hemodynamics - (천마반하탕이 뇌허혈에 미치는 기전 연구)

  • Yang Gi Ho;Lee Geum Soo;Kim Young Kun;Jeong Hyun Woo;Kim Gye Yeop;Jeon Byung Gwan;Lee Won Suk
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.5
    • /
    • pp.1404-1409
    • /
    • 2004
  • Cheonmabanhwa-Tang(CBT) has been used in the Oriental Medicine for many centuries as a therapeutic agent for dizziness due to Poong-Dam. This Study was designed to investigate the mechanism of Prescription on cerebral hemodynamics [regional cerebral blood flow(rCBF) and pial arterial diameter(PAD)J in cerebral ischemia rats, The results in cerebral ischemic rats were as follows: Both rCBF and PAD were significantly and stably increased by CBT (10 ㎎/㎏, i.p.) during the period of cerebral reperfusion, which contrasted with the findings of rapid and marked increase in control group. Pretreatment with indomethacin(1 ㎎/㎏, i.p.), an inhibitor of cyclooxygenase significantly but unstably increased the CBT-induced increases in PAD as well as rCBF during the period of cerebral reperfusion. Pretreatment with methylene blue(10 (.1.㎍/㎏, i.p.), an inhibitor of guanylate cyclase significantly but unstably increased the CBT-induced increases in PAD as well as rCBF during 150 minutes of cerebral reperfusion, but decreased stably the CBT-induced increases in rCBF and PAD after 180 minutes of cerebral reperfusion. In conclusion, the present authors thought that CBT caused effect on cerebral hemodynamics via mediation of cyclooxygenase.

Experimental Effects of Sibjeondaebo-tang and Gamy-Sibjeondaebo-tang on Cerebral Hemodynamics in Cerebral Ischemia Rats (십전대보탕(十全大補湯)과 가미십전대보탕(加味十全大補湯)이 뇌허혈 흰쥐의 뇌혈류역학에 미치는 실험적 영향)

  • Lee, Sang Young;Jeong, Hyun Woo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.2
    • /
    • pp.173-182
    • /
    • 2013
  • This Study was designed to investigate the effects of Sibjeondaebo-tang (SDT) and Gamy-Sibjeondaebo-tang (GST, Sibjeondaebo-tang adding Cervi Pantotrichum Cornu) on the improvement in regional cerebral blood flow (rCBF) and mean arterial blood pressure (MABP) in normal rats, and in the rats with cerebral ischemia induced by middle cerebral artery occlusion, and further to determine the mechanisms. And, It was to investigate the effects of the SDT and GST with the change of histologic examination through the BDNF in the hippocampus CA1. In changes of cerebral hemodynamics, SDT and GST significantly increased rCBF in a dose-dependent manner but decreased MABP in normal rats. In mechanism of cerebral hemodynamics, Increase of GST-induced rCBF was significantly inhibited by pretreatment with methylene blue (0.01 mg/kg, i.p.), an inhibitor of guanylate cyclase, and Decrease of GST-induced MABP was significantly increased by pretreatment with methylene. These results suggested that the action of GST was mediated by guantlate cyclase pathway. In cerebral ischemics, the rCBF was stably improved by SDT (10 mg/kg, i.p.) significantly and stably increased by GST (10 mg/kg, i.p.) during the period of cerebral reperfusion, which contrast with the findings of rapid and marked increase in Control group. These results suggested that GST had anti-ischemic action in cerebral ischemic state. In histological examination through TTC stain, Sample A group and Sample B group decreased discoloration in the cortical part at $28^{th}$ day after MCAO induction. In immunohistochemistric response of BDNF, Sample A group and Sample B group increased respondent effect at $28^{th}$ day after MCAO induction. These results suggest that GST can Increase rCBF in normal state, as well as improve the stability of rCBF in cerebral ischemic state. Furthermore, methylene blue inhibitor study suggested the mechanism of blood flow enhancement by GST may be mediated by guanylate cyclase pathway.

Effects of Yanggyuksanhwa-tang on Global Cerebral Ischemia of Diabetic Rats Induced by Streptozotocin (양격산화탕(凉膈散火湯)이 당뇨흰쥐의 전뇌허혈에 미치는 영향)

  • Kim, Eui-Jong;Kim, Youn-Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.2
    • /
    • pp.321-327
    • /
    • 2008
  • This study evaluated neuroprotective effects of Yanggyuksanhwa-tang (YST) on global cerebral ischemia of diabetic rats. On primary experiment, diabetic condition in rats was induced by streptozotocin injection. Secondarily, global cerebral ischemia was induced by bilateral occlusion of the common carotid artery with hypotension (BCAO) under the diabetic condition. Then neuroprotective effect of YST was observed with changes of neuronal c-Fos and Bax expressions, and GFAP expression in the brain tissues by using immunohistochemistry. YST treatment was resulted significant decrease of c-Fos expression in CA1 hippocampus induced by BCAO on diabetic rats. YST treatment was resulted significant decrease of Bax expression in CA1 hippocampus induced by BCAO on diabetic rats. YST treatment was resulted significant decrease of c-Fos expression in cerebral cortex and caudoputamen induced by BCAO on diabetic rats. YST treatment was resulted significant decrease of GFAP expression in cerebral cortex induced by BCAO on diabetic rats. These results suggest that YST has effects on neuroprotection against cerebral ischemic damage under diabetic condition. And it is supposed that neuroprotective effect of YST reveals by anti-apoptosis mechanism.