• 제목/요약/키워드: Cerebral Cortex

검색결과 445건 처리시간 0.02초

침구과에 입원한 뇌졸중 환자의 최근 역학적 동향 (Recent Epidemiologic Trends on Stroke Patients Admitted to Department of Acupuncture & Moxibustion, Oriental Medical Hospital, Kyung Hee University)

  • 홍장무;강미경;김종덕;인창식;강중원;박상민;서병관;정인태;고형균
    • Journal of Acupuncture Research
    • /
    • 제21권4호
    • /
    • pp.19-29
    • /
    • 2004
  • Objective : The purpose of this study is to present the epidemiological data on patients with a stroke admitted to Department of Acupuncture & Moxibustion, Oriental Medical Hospital Kyung Hee University and to investigate the difference between preceding diseases of stroke. Methods : We reviewed medical records of 700 patients with a stroke admitted to Department of Acupuncture & Moxibustion, Oriental Medical Hospital, Kyung Hee University. Results: The incidence of cerebral infarction was 6.7 times that of cerebral hemorrhage. The incidence in males was 1.28 times of that in females. The incidence of stroke increased with aging and more cerebral hemorrhage occured in lower age group than cerebral infarction. There was higher morbidity in October, during the changing of the seasons, than any other months. Hypertension was the most common preceding disease followed by diabetis mellitus, heart disease, hyperlipidemia, and according to Odds's ratio for Male/Female, the probability of having preceding diseases was higher in females than males. In cerebral infarction, MCA territory was the most frequent lesion sites. Of the cerebral hemorrhage, basal ganglia (60%) was the most commonly involved site which was followed by thalamus(33.3%), cortex (3.3%) and subcortex (2.2%). The most common symptom accompanied by stroke was motor dysfunction which was followed by verbal disturbance, urination disorder and dysphagia. Conclusion : This study showed the trends of stroke in Oriental medical center. We expects that Multicenter cooperative and prospective study including Oriental Medicine will be inspired by this study for establishing more accurate chacteristics of stroke in Korea in the future.

  • PDF

허혈성 대뇌손상시 curcumin 투여에 의한 peroxiredoxin-5 발현의 변화 (Change of Peroxiredoxin-5 Expression by Curcumin Treatment in Cerebral Ischemia)

  • 김상아;고필옥
    • 농업생명과학연구
    • /
    • 제50권3호
    • /
    • pp.129-139
    • /
    • 2016
  • Curcumin은 항산화제로서 신경세포의 보호작용에 관여하며, peroxiredoxin-5는 활성산소의 형성을 저해하여 산화적 스트레스로부터 신경세포를 보호한다고 알려져 있다. 본 연구는 허혈성 대뇌손상모델에서 curcumin에 의해 조절되는 peroxiredoxin-5 발현의 변화에 관하여 조사하였다. 실험동물은 흰쥐(Sprague-Dawley, 수컷)를 사용했으며, 허혈성 대뇌손상을 유도하기 위하여 중간대뇌동맥폐쇄술(MCAO)을 실시하였다. MCAO를 시행한 1시간 후에 curcumin(50mg/kg B.W.) 또는 vehicle을 복강으로 주사하였고, MCAO을 실시한 24시간 후 대뇌피질의 조직을 적출하였다. Hematoxylin과 eosin 조직염색 결과 MCAO를 시행한 대뇌피질에서는 신경세포의 괴사 소견을 보였지만, curcumin 투여군에서 이들 신경세포의 손상이 완화되어 있어 MCAO로 유도된 대뇌 손상시 curcumin의 보호효과를 확인하였다. 또한 MCAO를 실시한 vehicle+MCAO 실험군에서 peroxiredoxin-5 단백질의 발현은 감소하였으나, curcumin을 처리한 curcumin+MCAO 실험군에서는 vehicle+MCAO 실험군의 감소에 비해 감소의 폭이 현저히 줄어들어 MCAO를 시행하지 않은 sham군의 발현 수준으로 유지되었다. Reverse-transcription PCR과 Western blot 분석을 통해 중간대뇌동맥폐쇄술로 유도된 허혈성 대뇌손상 모델에서 peroxiredoxin-5 발현의 감소와 curcumin의 투여에 의한 peroxiredoxin-5 발현 감소의 완화를 확인하였다. 본 연구의 결과는 curcumin의 처리는 MCAO로 인한 peroxiredoxin-5 발현의 감소를 억제시킨다는 것을 보여주었다. 따라서, 대뇌손상 모델동물에서 curcumin은 MCAO로 유도된 peroxiredoxin-5 발현의 감소 정도를 완화시킴으로서 curcumin이 신경세포 보호작용에 기여하는 것으로 사료된다.

두침과 상하지 침자극이 뇌와 뇌의 체성감각피질에 미치는 영향에 대한 fMRI Study (Effects of Head Acupuncture Versus Upper and Lower Limbs Acupuncture on Signal Activation of Blood Oxygen Level Dependent(BOLD) fMRI on the Brain and Somatosensory Cortex)

  • 박정미;곽자영;조승연;박성욱;정우상;문상관;고창남;조기호;김영석;배형섭;장건호;방재승
    • Journal of Acupuncture Research
    • /
    • 제25권5호
    • /
    • pp.151-165
    • /
    • 2008
  • Objectives : To evaluate the effects of Head Acupuncture versus Upper and Lower Limbs Acupuncture on signal activation of Blood Oxygen Level Dependent(BOLD) fMRI on the Brain and Somatosensory Cortex. Subjects and Methods : 10 healthy normal right-handed female volunteer were recruited. The average age of the 10 subjects was 30 years old. The BOLD functional MRI(fMRI) signal characteristics were determined during tactile stimulation was conducted by rubbing 4 acu-points in the right upper and lower limbs($LI_1$, $LI_{10}$, $LV_3$, $ST_{36}$). After stimulation of Head Acupuncture in Sishencong($HN_1$), $GB_{18}$, $GB_9$, $TH_{20}$ of Left versus Upper and Lower Limbs Acupuncture($LI_1$, $LI_{10}$, $LV_3$, $ST_{36}$ of Right) and took off needles. Then the BOLD fMRI signal characteristics were determined at the same manner. Results : 1. When touched with cotton buds(sensory stimulation), left Parietal Lobe, Post-central Gyrus, primary somatosensory cortex(BA 1, 2, 3), and primary motor cortex(BA 4) were mainly activated. When $ST_{36}$ was stimulated, Frontal Lobe, Parietal Lobe, Cerebellum, and Posterior Lobe as well as Inter-Hemispheric displaying a variety of regions. 2. In signal activation before and after Head Acupuncture reaction, it showed signal activation after removing the acupuncture needle and right Somatosensory Association Cortex, Postcentral Gyrus, and Parietal Lobe were more activated. 3. In reactions of before and after Upper and Lower Limb Acupuncture, it also showed signal activation after removing the acupuncture needle and bilateral Occipital Lobe, Lingual Gyrus, visual association cortex, and Cerebellum were activated. 4. After acupuncture stimulation, In Upper and Lower Limb Acupuncture Group, left frontal Lobe, Precentral Gyrus and Bilateral parietal lobe, Postcentral Gyrus and Primary Somatosensory Cortex(BA 2) were activated. In Head Acupuncture Group, which has most similar activation regions, but especially right Pre-Post central Gyrus, Primary Somatosensory Cortex(BA 3), Primary Motor Cortex, frontal Lobe and Parietal Lobe were activated. Conclusions : When sensory stimulation was done with cotton buds on four acup-points($LI_1$, $LI_{10}4, $LV_3$, $ST_{36}$), while bilaterally activated, contralateral sense was more dominant. It showed consistency with cerebral cortex function. When $ST_{36}$ was stimulated Frontal Lobe, Parietal Lobe, Cerebellum, Posterior Lobe as well as Inter-Hemispheric were stimulated. In Head Acupuncture, it showed more contralateral activation after acupuncture. In Upper and Lower Limb Acupuncture, it showed typically contralateral activation and deactivation of limbic system after acupuncture stimulation. Therefore, there were different fMRI BOLD signal activation reaction before and after Head Acupuncture vs Upper and Lower Limb Acupuncture which might be thought to be caused by acu-points' sensitivity and different sensory receptor to response acupuncture stimulation.

  • PDF

Alteration of Immunoreactivity for SNARE Proteins in the Rat Hippocampus after Middle Cerebral Artery Occlusion

  • Park, Jung-Sun;Huh, Pil-Woo;Jung, Yeon-Joo;Park, Su-Jin;Lee, Kyung-Eun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제8권3호
    • /
    • pp.141-146
    • /
    • 2004
  • Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) proteins, composed of two presynaptic membrane proteins [synaptosomal-associated protein of 25 kDa (SNAP-25) and syntaxin] and a presynaptic vesicular protein [vesicle-associated membrane protein (VAMP)], serve as a core of exocytotic fusion machinery, which can be affected by ischemia. Synaptic protein in core region, striatum and cortex has been shown to alter after focal ischemia, however, little is known in hippocampus. Hippocampus is remote from ischemic core, but it is one of the most vulnerable regions. Using immunohistochemistry, the present study was undertaken to investigate the alteration of expression of SNAP-25, syntaxin, and VAMP in the hippocampus of rats which were subjected to middle cerebral artery occlusion (MCAO) for 2h and allowed to reperfuse. At 2 weeks of reperfusion, the SNAP-25 and syntaxin immunoreactivity was increased in the stratum oriens of the CA1 and the stratum lucidum of the CA3 in the ipsilateral hippocampus. However, VAMP immunoreactivity didn't show significant change. These results demonstrate that the level of the presynatpic plasma membrane proteins (SNAP-25 and syntaxin) in the rat hippocampus is more sensitively affected by focal ischemia than that of the synaptic vesicle protein (VAMP).

뇌허혈성 부위의 조직학적 특성을 통한 임상적 영향 (Clinical Effect through Histological Characteristics of Focal Ischemia Region)

  • 이태훈
    • 산업융합연구
    • /
    • 제17권4호
    • /
    • pp.39-43
    • /
    • 2019
  • 마우스 배아 줄기 세포는 신경 세포 분화가 가능한 세포의 대안적인 공급원이 될 수 있으며 잠재적으로 신경계 질환의 치료에 유용하게 사용될 수있다. 우리는 배아 줄기 세포 (ESCs)가 신경 분화를 유도하도록 유도 될 수 있는지를 조사했다. 신경 세포 유도 후, mESC의 표현형이 뉴런의 형태학으로 변하였고, mESCs는 실험쥐 뇌의 측 뇌실로 주입되었다. 이식 된 세포는 뇌의 여러 부위로 이동하였고 중대뇌동맥 결찰에 의한 허혈성 뇌혈관 손상부위에 이식된 줄기세포군이 손상된 피질부위로 집중적으로 이동하여 손상복구 기전을 증가시켰다. mESCs의 뇌내 이식은 MCAO 쥐의 기능적 결손의 감각 및 운동 회복을 유의 적으로 향상시킨다. 이러한 데이터는 이식 된 mESC가 허혈성 미세 환경에서 생존, 이동 및 분화하고 쥐에서 뇌졸중 후 신경 기능 회복을 향상 시킨다는 것을 나타낸다. 따라서 우리는 mESC의 이식이 인간 신경계 손상 및 퇴행성 장애에 대한 강력한 이식 치료법을 제공 할 것으로 기대한다.

Delayed Intraventricular Nogo Receptor Antagonist Promotes Recovery from Stroke by Enhancing Axonal Plasticity

  • Kim, Tae-Won;Lee, Jung-Kil;Joo, Sung-Pil;Kim, Tae-Sun;Kim, Jae-Hyoo;Kim, Soo-Han
    • Journal of Korean Neurosurgical Society
    • /
    • 제39권2호
    • /
    • pp.130-135
    • /
    • 2006
  • Objective : After ischemic stroke, partial recovery of function frequently occurs and may depend on the plasticity of axonal connections. Here, we examine whether blockade of the Nogo/NogoReceptor[NgR] pathway might enhance axonal sprouting and thereby recovery after focal brain infarction. Methods : Adult male Sprague Dawley rats weighing $250{\sim}350g$ were used. Left middle cerebral artery occlusion[MCAO] was induced with a intraluminal filament. An osmotic mini pump [Alzet 2ML4, Alza Scientific Products, Palo Alto, CA] for the infusion of NgR-Ecto[310]-Fc to block Nogo/NgR pathway was implanted 1 week after cerebral ischemia. Prior to induction of ischemia, all animals received training in the staircase and rotarod test. Two weeks after biotin dextran amine injection, animals were perfused transcardially with PBS, followed by 4% paraformadehyde/PBS solution. Brain and cervical spinal cord were dissected. Eight coronal sections spaced at 1mm intervals throughout the forebrain of each animal with cresyl violet acetate for determination of infarction size. Images of each section were digitized and the infarct area per section was measured with image analysis software. Results : Histological examination at 11 weeks post-MCAO demonstrates reproducible stroke lesions and no significant difference in the size of the stroke between the NgR[310]Ecto-Fc protein treated group and the control group. Behavioral recovery is significantly better and more rapid in the NgR-Ecto[310]-Fe treated group. Blockade of NgR enhances axonal sprouting from the uninjured cerebral cortex and improves the return of motor task performance. Conclusion : Pharmacological interruption of NgR allows a greater degree of axonal plasticity in response this is associated with improved functional recovery of complicated motor tasks.

Effects of Melatonin on Improvement of Neurological Function in Focal Cerebral Ischemic Rats

  • Lee, Seung-Hoon;Shin, Jin-Hee;Lee, Min-Kyung;Lee, Sang-Kil;Lee, Sang-Rae;Chang, Kyu-Tae;Hong, Yong-Geun
    • Reproductive and Developmental Biology
    • /
    • 제35권2호
    • /
    • pp.167-174
    • /
    • 2011
  • Acute ischemic stroke results from sudden decrease or loss of blood supply to an area of the brain, resulting in a coinciding loss of neurological function. The antioxidant action of melatonin is an important mechanism among its known effects to protective activity during ischemic/reperfusion injury. The focus of this research, therapeutic efficacy of melatonin on recovery of neurological function following long term treatment in ischemic brain injured rats. Male Sprague-Dawley rats (n=40; 8 weeks old) were divided into the control group, and MCAo groups (Vehicle, MT7 : MCAo+ melatonin injection at 7:00, MT19 : MCAo+melatonin injection at 19:00, and MT7,19 : MCAo+melatonin injection at 7:00 and 19:00). Rat body weight and neurological function were measured every week for 8 weeks. After 8 weeks, the rats were anesthetized with a mixture of zoletil (40 mg/kg) and xylazine (10 mg/kg) and sacrificed for further analysis. Tissues were then collected for RNA isolation from brain tissue. Also, brain tissues were analyzed by histological procedures. We elucidated that melatonin was not toxic in vital organs. MT7,19 was the most rapidly got back to mild symptom on test of neurological parameter. Also, exogenous melatonin induces both the down-regulation of detrimental genes, such as NOSs and the up-regulation of beneficial gene, including BDNF during long term administration after focal cerebral ischemia. Melatonin treatment reduced the loss of primary motor cortex. Therefore, we suggest that melatonin could be act as prophylactic as well as therapeutic agent for neurorehabilitative intervention.

뇌경색에 의한 편측부전마비에서 자기운동유발전위의 변동 (Change of Magnetic Motor Evoked Potentials in Hemiparesis due to Cerebral Infarction)

  • 이주호;박영혁;김광수;유경무
    • Annals of Clinical Neurophysiology
    • /
    • 제1권2호
    • /
    • pp.99-105
    • /
    • 1999
  • Background and Objectives : The Motor evoked potentials (MEP) study may be useful in the evaluation of the degree of impairment in the motor nervous system and in the determination of the prognosis. The purpose of this study is to evaluate the status of central nervous system in acute and subacute state of cerebral ischemia by comparing the changes of MEP in the initial and follow-up study. Methods : Twenty patients with hemiparesis caused by ischemic stroke were recruited for this study. We tested MEP within 7 days and followed-up after 14 days after symptom onset. The cerebral motor cortex area, cervical area for upper extremity and lumbar area for lower extremity were stimulated by transmagnetic stimulator. The central motor conduction time(CMCT) was measured with the difference in MEP caused by stimulating the vertical area and spinal area. The CMCT of hemiparetic patients were classified into three groups-normal, delayed, and no evoked MEP groups. Results : The CMCT in hemiparetic side of acute ischemic stroke patients were singnificantly delayed (P < 0.05) compared with the control group. The CMCT of hemiparetic side in the follow-up study showed no sinificantly difference in comparison to the control group. The prognosis of motor improvement was better in the groups of delayed MEP than the groups of no evoked MEP. Conclusion : The CMCT of hemiparetic and contralateral sides were delayed in acute ischemic stroke, compared with control group and were returned to normal boundaries in subacute state. But in the most cases with no MEP response in the initial study, also showed no MEP response in the follow-up study. The recovery occurred in the subacute state in cases with mild hemiparesis, whereas recovery did not occur in the subacute stage in case with severe hemiparesis.

  • PDF

말티즈견에서 괴사성 뇌막뇌염 증례 (A Case of Necrotizing Meningoencephalitis in a Maltese Dog)

  • 박진희;엄기동;김재훈;성윤상;이해운;이상관;장광호;이근우;권오덕;박현정;오태호
    • 한국임상수의학회지
    • /
    • 제22권3호
    • /
    • pp.284-287
    • /
    • 2005
  • A 18-month-old, male Maltese dog with acute seizure was referred to Veterinary Medical Teaching Hospital, Kyungpook National University. Abnormal neurologic findings included a tendency to fall to the left, turn and circle to the right, negative bilateral menace responses and pupillary light reflexes, and diminished responses to facial sensation testing on both sides. Radiographic signs were normal, except for occipital dysplasia. Magnetic resonance imaging of the brain revealed bilateral asymmetric ventriculomegaly, which is more on left side. Cerebral edema was also suspected. The dog died after 9 days from the onset of seizure, and a necropsy was performed. Histopathologically, the brain lesions in the meninges and the cerebral cortex of this dog was presented. There was severe diffuse nonsuppurative inflammation in perivascular area of the meninges and the cerebral white matter. Based on the results, this case was diagnosed as necrotizing meningoencephalitis in Maltese dog.

GABA 수용체 영상 (GABA Receptor Imaging)

  • 이종두
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제41권2호
    • /
    • pp.166-171
    • /
    • 2007
  • GABA is primary an inhibitory neurotransmitter that is localized in inhibitory interneurons. GABA is released from presynaptic terminals and functions by binding to GABA receptors. There are two types of GABA receptors, $GABA_{A}-receptor$ that allows chloride to pass through a ligand gated ion channel and $GABA_{B}-receptor$ that uses G-proteins for signaling. The $GABA_{A}$-receptor has a GABA binding site as well as a benzodiazepine binding sites, which modulate $GABA_{A}$-receptor function. Benzodiazepine GABAA receptor imaging can be accomplished by radiolabeling derivates that activates benzodiazepine binding sites. There has been much research on flumazenil (FMZ) labeled with $^{11}C-FMZ$, a benzodiazepine derivate that is a selective, reversible antagonist to GABAA receptors. Recently, $^{18}F-fluoroflumazenil$ (FFMZ) has been developed to overcome $^{11}C's$ short half-life. $^{18}F-FFMZ$ shows high selective affinity and good pharmacodynamics, and is a promising PET agent with better central benzodiazepine receptor imaging capabilities. In an epileptic focus, because the GABA/benzodiazepine receptor amount is decreased, using $^{11}C-FMZ$ PET instead of $^{18}F-FDG$ PET, restrict the foci better and may also help find lesions better than high resolution MR. $GABA_{A}$ receptors are widely distributed in the cerebral cortex, and can be used as an viable neuronal marker. Therefore it can be used as a neuronal cell viability marker in cerebral ischemia. Also, GABA-receptors decrease in areas where neuronal plasticity develops, therefore, $GAB_{A}$ imaging can be used to evaluate plasticity. Besides these usages, GABA receptors are related with psychological diseases, especially depression and schizophrenia as well as cerebral palsy, a motor-related disorder, so further in-depth studies are needed for these areas.