• Title/Summary/Keyword: Ceramic-polymer film

Search Result 61, Processing Time 0.024 seconds

Fabrication and characteristics PbTiO3/P(VDF/TrFE) thin films for pyroelectric infrared sensor (초전형 적외선 센서용 PbTiO3/P(VDF/TrFE) 박막의 제조 및 특성)

  • Kwon, Sung-Yeol
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.10-15
    • /
    • 2003
  • $PbTiO_3$/P(VDF/TrFE) thin film for pyroelectric infrared sensor's sensing materials have been fabricated by spin coating technique. 65 wt% VDF and 35 wt% TrFE were for P(VDF/TrFE) powder. $PbTiO_3$ powder was used for a ceramic - polymer composites materials. Surface of composite thin film by ceramic fraction factor was observed by SEM. The $PbTiO_3$/P(VDF/TrFE) thin film capacitancy, dielectric constant and dielectric loss measured by impedence analyzer(HP4192A) and pyroelectric coefficient was measured by semiconductor parameter analyzer(HP4145B).

Evaluation of Piezoelectric Properties in Pb(Zr,Ti)$O_3$-PVDF 0-3Type Composites for Thick Film Speaker Application (후막스피커 응용을 위한 Pb(Zr,Ti)$O_3$-PVDF 0-3형 복합체의 압전 특성 평가)

  • Son, Yong-Ho;Kim, Sung-Jin;Jeong, Joon-Seok;Ryu, Sung-Lim;Kweon, Soon-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.40-41
    • /
    • 2006
  • In this work, we developed the 0-3 type piezoelectric composite to incorporate the advantages of both ceramic and polymer. The PVDF-PZT composites were fabricated with various mixing ratio by 3-roll mi11 mixer. The composite solutions were coated on ITO bottom-electrode deposited on PET (polyethylene terephthalate) polymer film by the conventional screen-printing method. After depositing the top-electrode of silver-paste, 4kV/mm of DC field was applied at $120^{\circ}C$ for 30min to poling the 0-3 composite film. The value of $d_{33}$ was increased as the PZT weight percent was increases. But the $g_{33}$ value showed the maximum at 65 wt% of PZT powder.

  • PDF

The Microhole Machining Characteristic According to Purity of the $Al_2O_3$ Ceramics ($Al_2O_3$ 세라믹의 순도별 미세구멍 가공특성)

  • 윤혁중;임순재;이동주;한흥삼
    • Laser Solutions
    • /
    • v.2 no.3
    • /
    • pp.32-41
    • /
    • 1999
  • This study is about Jig used in wiring when we make Probecard and Large Scale Intergrated Electronic Circuit. The most universal wiring method is molding with Bond. Polymer film is punched down and adhesives is applied after wiring. Due to shrinkage and modification many problems still have happened in the process of molding. To solve these problems, ceramic plate was introduced in the study. Using Laser, an experiment of microhole treatment on ceramic plate was proceeded. Laser energy, assistance gas, and special features by purity degree were analyzed with the 35W low capacity YAG-Laser. In the condition of energy 0.08J, frequency 20Hz and interval time 200$mutextrm{s}$, about 70${\mu}{\textrm}{m}$ microhole was adequate for the Probecard Jig. In the purity experiment of ceramic materials, high purity ceramic met with good result for microhole. But the price is too high. The shape and size of holes machined combustion gas $O_2$ were better than those in $N_2$ and Ar, the inert gas.

  • PDF

Preparation and Properties of PVP (poly-4-vinylphenol) Gate Insulation Film For Organic Thin Film Transistor (유기박막 트랜지스터용 PVP (poly-4-vinylphenol) 게이트 절연막의 제작과 특성)

  • Baek, In-Jae;Yoo, Jae-Hyouk;Lim, Hun-Seung;Chang, Ho-Jung;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.4 s.37
    • /
    • pp.359-363
    • /
    • 2005
  • The organic insulation devices with MIM (metal-insulator-metal) structures as PVP gate insulation films were prepared for the application of organic thin film transistors (OTFT). The co-polymer organic insulation films were synthesized by using PVP(poly-4-vinylphenol) as solute and PGMEA (propylene glycol monomethyl ether acetate) as solvent. The cross-linked PVP insulation films were also prepared by addition of poly (melamine-co-formaldehyde) as thermal hardener. The leakage current of the cross-linked PVP films was found to be about 300 pA with low current noise. and showed better property in electrical properties as compared with the co-polymer PVP insulation films. In addition, cross-linked PVP insulation films showed better surface morphology (roughness), showing about 0.11${\~}$0.18 nF in capacitance for all PVP film samples.

  • PDF

Deformation Behavior and Nucleation Activity of a Thermotropic Liquid­Crystalline Polymer in Poly(butylene terephthalate)-Based Composites

  • Kim Jun Young;Kang Seong Wook;Kim Seong Hun;Kim Byoung Chul;Shim Kwang Bo;Lee Jung Gyu
    • Macromolecular Research
    • /
    • v.13 no.1
    • /
    • pp.19-29
    • /
    • 2005
  • Polymer composites based on a thermotropic liquid-crystalline polymer (TLCP) and poly(butylene terephthalate) (PBT) were prepared using a melt blending process. Polymer composites consisting of bulk cheap polyester with a small quantity of expensive TLCP are of interest from a commercial perspective. The interactions between the PBT chains and the flexible poly(ethylene terephthalate) (PET) units in the TLCP phase resulted in an improvement in the compatibility of PBT/TLCP composites. TLCP droplets deformed and fragmented into smaller droplets in the PBT/TLCP composites, which resulted in TLCP fibrillation through the effective deformation of the TLCP droplets. The nucleation activities of the PBT/TLCP composites increased by adding even a small amount of the TLCP component.

Fabrication of Inkjet-printed and Non-sintered $BaTiO_3$ Dielectric Film

  • Lim, Jong-Woo;Kim, Ji-Hoon;Kim, Hyo-Tea;Yoon, Young-Joon;Yoon, Ho-Gyu;Kim, Jong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.80-80
    • /
    • 2009
  • $BaTiO_3$ has high permittivity so that has been applied to dielectric and insulator materials in 3D system-level package integration. In order to achieve excellent performance of device, the $BaTiO_3$ layer should be highly dense. In this study, $BaTiO_3$ thick films were prepared by the inkjet printing method using 4 vol.% $BaTiO_3$ colloidal inks and cured at $28^{\circ}C$ for 5 h after infiltration of polymer resin for non-sintered process using 3 vol.% cyanate ester emulsion ink. From the obtained results. packing density was determined to be improved by overlapping rabbit ears which were generated by coffee ring effect. We also calculated the packing densities of the films and correlated these packing densities to the measured permittivity of the films.

  • PDF

ANTICORROSION PROPERTIES OF SIOC COATED SUS-316

  • Kim, Su-Ryong;Gwon, U-Taek;Kim, Jeong-Ju;Kim, Jong-Il;Kim, Yeong-Hui;Kim, Jeong-Il;U, Chang-Hyeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.34.2-34.2
    • /
    • 2009
  • The ceramic coatings on metallic materials have attracted by many researchers due to the chemical inertness of ceramic materials. In such aspect, SiOC is a promising material tobe used as protective coating layer on metallic materials due to its outstanding thermal stability and chemical inertness. In this research, SiOC coating was carried out onto SuS-316 substrate using Cl free preceramic polymers such aspolyphenylcarbosilane. 20% of polymethylphenylsilane in cyclohexane solution was coated onto metal surface by dip coating method. Thermal oxidation was carried out at $200^{\circ}C$ for crosslink of the preceramic polymer and the sample was pyrolysized at $800^{\circ}C$ under argon to convert the preceramic polymer to amorphous SiOCx state. The microstructure of the SiOCx film after pyrolysis was investigated using FE-SEM. Corrosion resistance of SiOC coated SuS-316 substrate has been investigated using 5% HCl solution at 25, 40, 60 and $80^{\circ}C$ for 7days. The data revealed that the corrosion resistance increased with SiOC coating on SuS-316 substrate.

  • PDF

Fabrication of Capacitive-Type Humidity Sensor with Poly(p-phenylene ether sulfone) (폴리(페닐렌에테르설폰)을 이용한 용량형 습도센서의 제조)

  • Cho, Jae-Ick;Choi, Kyoon;Kim, Chang-Jung;Kim, Byung-Ik;Park, Sueng-Hyun;Bang, Gi-Suk
    • Polymer(Korea)
    • /
    • v.30 no.3
    • /
    • pp.207-209
    • /
    • 2006
  • We fabricated a capacitive-type humidity sensor using poly (p-phenylene ether sulfone: PES) as a humidity sensitive layer. The PES was dissolved in m-cresol $(CH_3C_6H_4OH)$ and spin-coated on ITO-coated glass substrate. Gold was deposited by sputtering as a water-permeable upper electrode. The capacitance of the sensor was inversely proportional to sensing film thicknesses and showed an excellent linearity of less than 1% in the humidity range of 20 to 90%. The sensor haying a $1.4{\mu}m$ sensing layer showed a hysteresis of 1.3% and a good sensitivity of 1.14 at 20 kHz.

Process Development for Synthesis of Ultra-low Dielectric SiO2 Aerogel Thin by Freeze Drying (동결건조에 의한 극저유전성 실리카 에어로겔 박막 합성공정 개발)

  • 현상훈;김태영
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.3
    • /
    • pp.307-318
    • /
    • 1999
  • 동결건조법에 의한 저유전성 실리카 박막의 제조공정 개발 및 층간 절연물질로의 응용성이 연구되었다. 코팅용 폴리머 실리카 졸은 TEOS와 이소프로판올(iso-propanol:IPA)또는 터트부탄올(tert-butanol:TBA)을 용매로한 2단계 공정에 의하여 제조되었으며, 이들 졸을 p-Si(111)웨이퍼 상에 스핀코팅한 습윤겔 박막을 동결건조 하여 다공성 실리카 박막을 제조하였다. 균일한 박막 코팅층을 얻을 수 있는 실리카 졸의 최적 점도범위는 IPA와 TBA를 용매로 한 실리카 졸의 경우 각각 10~14 cP와 20~30cP 정도였으며 스핀속도는 2000 rpm 이상이었다. 결함이 없는 다공성 실리카 박막은 TBA(빙점 $25^{\circ}C$)를 동결용매로 하여-196$^{\circ}C$까지 급랭시킨 후 $0^{\circ}C$와 0.1 torr 까지 가열 감압한 상태에서 고상의 TBAFMF 모두 제거한 다음 20$0^{\circ}C$까지 열처리하여 제조되었다. 다공성 실리카 박막의 두께는 졸의 타입과 스핀코팅 속도에 의해 2500~15000$\AA$범위 내에서 제어가 가능하였으며 이들 막의 밀도와 유전상 수 값은 각각 0.9$\pm$0.3g/㎤(기공율 60$\pm$10%)과 2.4 정도였다.

  • PDF

Flame Retardant Properties of Polymer Cement Mortar Mixed with Light-weight Materials for 3D Printing (3D 프린팅용 경량재료 혼입 폴리머 시멘트 모르타르의 난연특성)

  • Son, Bae-Geun;Song, Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.330-337
    • /
    • 2021
  • 3D printing is not only at the fundamental study and small-scale level, but has recently been producing buildings that can be inhabited by people. Buildings require a lot of cost and labor to work on the form work, but if 3D printing is applied to the building, the construction industry is received attention from technologies using 3D printing as it can reduce the construction period and cost. 3D printing technology for buildings can be divided into structural and non-structural materials, of which 3D printing is applied to non-structural materials. Because 3D printing needs to be additive manufacturing, control such as curing speed and workability is needed. Since cement mortar has a large shrinkage due to evaporation of water, cement polymer dispersion is used to improve the hardening speed, workability, and adhesion strength. The addition of polymer dispersion to cement mortar improves the tensile strength and brittleness between the cement hydrate and the polymer film. Cement mortar using polymer materials can be additive manufacturing but it has limited height that can be additive manufacturing due to its high density. When light-weight materials are mixed with polymer cement mortar, the density of polymer cement mortar is lowered and the height of additive manufacturing, so it is essential to use light-weight materials. However, the use of EVA redispersible polymer powder and light-weight materials, additional damage such as cracks in cement mortar can occur at high temperatures such as fires. This study produced a test specimen incorporating light-weight materials and EVA redispersible polymer powder to produce exterior building materials using 3D printing, and examined flame resistance performance through water absorption rate, length change rate, and cone calorimeter test and non-flammable test. From the test result, the test specimen using silica sand and light-weight aggregate showed good flame resistance performance, and if the EVA redispersible polymer powder is applied below 5%, it shows good flame resistance performance.